Adapting Large Language Models for the Dynamic World

Presenter: Zixuan Ke <u>https://vincent950129.github.io/</u>

LLMs in A Fixed World?

Packed with knowledge and excels in many tasks

The world is **fixed** (i.i.d)

Once trained, LLMs are fixed

LLMs in A Dynamic World!

Packed with knowledge and excels in many tasks

The world is **everchanging**

Emerging domains/events/topics /information

LLMs in A Dynamic World

Packed with knowledge and excels in many tasks

How to adapt LLMs for the **dynamic world?**

Emerging domains/events/topics /information

LLMs in A Dynamic World: Plan

How to adapt LLMs for the **dynamic world?**

- Black-box LLM: Retrievedaugmented Generation (RAG)
- White-box LLM: Continual
 Pre-training
- Future Work

Bridging the Preference Gap between Retrievers and LLMs, Ke et al, arXiv 2024 Continual Pre-training of Language Models, Ke et al, ICLR 2023 Adapting a Language Model While Preserving its General Knowledge, Ke et al, EMNLP 2022

LLMs in A Dynamic World

How to adapt LLMs for the **dynamic world?**

Main idea: integrating fresh, external information to the LLMs without retraining the LLMs (no need to worry about the LLMs' parameters)

Retrieval-augmented Generation (RAG)

Retrievers

Retrieve task-relevant information, **pack** it into the context of the LLM

Existing work fine-tunes retrievers or LLMs or both to improve downstream tasks
 A general belief: ranking is the most important, as humans read from top to bottom

However, LLMs may exhibit preferences different from humans and yield sub-optimal predictions using the retrieved information 7

Retrieval-augmented Generation

Retrieval-augmented Generation

Dataset

Question Answering (NQ and HotpotQA):

Candidate passages are retrieved from WikiPedia Pages

Personalized Generation (Emails and Books):

Candidate passages are retrieved from reviews/emails authored by the same user in the past

Avg. #Tokens #Training #Test #Val. NO 79,168 3,610 517.82 8,757 HotpotQA 68,659 5,600 5,600 564.83 Email 13,305 764 1,227173.85 20,78941,331 41,331 124.52 Book

Context length < maximum length

Instruction : Finish the passage in the user voice
Review title: Perfect solution for long-
range planning!
Review product: 2018 - 2022 artwork
five-year planner
Review start: Wow! I've been
searching for something like this and
was so pleased when it came in! the
Remaining part: 2-page-per-month
style works. The blocks on the calendar
are big enough to write quite a bit

Query

Target

Preference Gap

Ranking: reads sequentially and order is crucial Selection: can ignore irrelevant

Ranking: order does not impact much Selection: significantly impact (either positively or negatively)(potentially more, e.g.,

repetition)

The general belief that ranking is most important DOES NOT hold for LLMs!

This is a crucial insight as it **confirms** the preference gap and highlights the importance of **bridging this preference gap** to enhance RAG.

Bridge model

- Fix the Retriever and the LLM and train an intermediate bridge model
 - LLMs are often only available as black-box
 APIs and fine-tuning is not an option
 - Retrievers only consider
 reranking, not applicable
 to other possible
 preference gap

Seq2seq Format

Not only rerank, but also dynamically select passages for each query

Potentially employ more advanced strategies like repetition

Typical RAG

□ No ground truth relevance label for what should be retrieved

□ But only ground truth label for the downstream tasks

Existing Approaches: Supervised learning

Use the supervision provided by the LLM, such as the perplexity of downstream tasks
 E.g., Feed candidate passage into LLMs and use the perplexity as relevance score
 Only Point-wise suspension!

However

Sequential supervision is missing or sparse

- Nearly impossible to feed all possible retrieved sequences into the LLM to obtain supervision
- Rely on intermediate relevance label
 - □ Not end-to-end training on the downstream tasks

BGM: Supervised Learning + Reinforcement Learning

- Supervised Learning
 - Synthesizing silver passage sequence based on greedy search
 - We select only the useful passages by incrementally selects the next passage that maximized the downstream task performance

BGM: Supervised Learning + Reinforcement Learning

- Reinforcement learning
 - Downstream task performance as reward, passage IDs as action space, bridge model as policy model
 - Much more supervision (recall that we only consider permutation or deletions in the silver passage sequence)
 - Train end-to-end on the downstream tasks

Bridging the Gap: Results

	Model	NQ	HotpotQA	Email	Book
	Metric	EM	EM	BLEU	BLEU
No external information	Naïve	33.07	28.01	5.57	11.5
Randomized GTR retriever	Random	43.71	26.1	8.55	8.61
GTR retriever	GTR	43.79	25.8	9.76	8.75
GTR + Reranker	PSR	43.6	25.51	9.08	9.14
	BGM	45.37	35.64	10.42	12.07
-		 		 	
				1	

SoTA < BGM

BGM is effective in adapting retrieved passages

Naïve is not always the worst

LLM already possesses a substantial amount of relevant knowledge (e.g., Book is from Amazon review)

GTR < BGM

HotpotQA is sensitive to irrelevant passages and has the most improvementNQ typically only requires one retrieved passage, so the improvement is less

PSR < BGM

Pure reranking is not sufficient. Selection must also be taken into account.

(PSR) Atlas: Few-shot Learning with Retrieval Augmented Language Models, Izacard et al., arXiv 2022

LLMs in A Dynamic World

How to adapt LLMs for the **dynamic world?**

Retrieval-augmented may not solve all problems (active research!). Another way is to update the parameters of LLMs with emerging data

This is, continual learning: (1) mitigate forgetting; and (2) encourage knowledge transfer

Post-training of Language Models

Pre-training Domain-adaptive Pre-training Post-training / Pre-finetuning Restaurant (t = 0)(t = 1)Huge amount Domain-specific data of general data Accessible

Two Needs:

Due to polysemy, LM should be specialized or adapted to the target domain (existing methods' focus, may destroy useful general knowledge)

General pre-trained knowledge should be preserved (our focus, a more informed adaptation that identifies what should be preserved and what should be updated)

Adapting a Language Model While Preserving its General Knowledge, Ke et al., EMNLP 2022

(A) Post-training

Restaurant	Phone	Camera
Ę	<u> </u>	

First, we post-train on a specific domain

(We use RoBERTa in this work)

(B) Fine-tuning

End-tasks

After (A), the performance is evaluated by end-tasks

Each end-task **corresponding** to one domain and has its **own** training and testing set.

ASC: Aspect Sentiment Classification

Post-training of Language Model

	Unlabeld	Unlabelde Domain Datasets			End-Task Classification Datasets					
6 domains –	Source	Dataset/Domain	Size	Dataset/Domain Task		#Training	#Testing	#Classes		
		Yelp Restaurant	758MB	Restaurant	Aspect Sentiment Classification (ASC)	3,452	1,120	3		
	Reviews	Amazon Phone	724MB	Phone	Aspect Sentiment Classification (ASC)	239	553	2		
		Amazon Camera	319MB	Camera	Aspect Sentiment Classification (ASC)	230	626	2		
	Academic Papers	ACL Papers	867MB	ACL	Citation Intent Classification	1,520	421	6		
		AI Papers	507MB	AI	Relation Classification	2,260	2,388	7		
		PubMed Papers	989MB	PubMed	Chemical-protein Interaction Prediction	2,667	7,398	13		
post-training					Ϋ́					
					Fine-tuning					

Post-training of Language Models

Post-training of Language Models

Goal: Compute the importance of units for **general** knowledge

Why?

Not all units are important
 Given the important units, we can protect them afterward

No training involved. We only need the importance

First, we added virtual parameters g_l .

Each virtual parameter $g_{l,i}$ in g_l corresponding to an attention head or neurons (units)

It is **initialized as all 1's** and has its gradient but will **never change**.

Why? We only use its gradient to compute importance

The gradient of L_{impt} w.r.t g_l will be used to compute importance.

Due to **randomness**, same input will result in different output representation Their distance indicates the **robustness**

xm

Units that are important to the robustness

their changes will cause the pretrained LM to change significantly

Units that are important to the pre-trained/general knowledge

So, the distance can be used as a **proxy** for general knowledge!

Based on the intuition, we propose another L_{impt} , which does not need pre-training data

KL: how different given two representations

 f_{LM}^1 / f_{LM}^2 : Transformer with different dropouts

 x_m : The domain data

Importance of units for general knowledge

Post-training of Language Models

Goal: Soft-mask the **gradient** based on the importance

Why?

 We need to protect them when training a new domain
 We want to encourage knowledge transfer

Soft-masking

First, we normalize the importance so that they are comparable $I_l = |Tanh(Norm(I_l))|$ make sure the importance is [0,1]

Next, we soft-mask the gradient (in backward pass)

 $\boldsymbol{\nabla}'_l = (1 - \boldsymbol{I}_l) \otimes \boldsymbol{\nabla}_l$

This only affects the backward pass so forward KT and full LM are still possible Not only provides protection, but also allow knowledge transfer

		Camera	Phone	Restaurant	ΑΙ	ACL	PubMed	Average
No post-train MLM MLM (Adapter)		78.82	83.75	79.81	60.98	66.11	72.38	73.64
		84.39	82.59	80.84	68.97	68.75	72.84	76.4
		83.62	82.71	80.19	60.55	68.87	71.68	74.6
SoTA post- training baselines	MLM+KD	82.79	80.08	80.4	67.76	68.19	72.35	75.26
	MLM+AdaptedDeiT	86.86	83.08	79.7	69.72	69.11	72.69	76.86
	MLM+SimCSE	84.91	83.46	80.88	69.1	69.89	72.77	76.84
	MLM+TaCL	81.98	81.87	81.12	64.04	63.18	69.46	73.61
	DGA	88.52	85.47	81.83	71.99	71.01	73.65	78.74

w/o Pre-trained < MLM

Not surprising, as post-training has been demonstrated to improve performance in the literature.

w/o Pre-trained < MLM < SoTA < DGA

DGA is better than pure MLM and SoTA post-training. DGA can not only mitigate forgetting of the general knowledge but also adapt to suite the target domain

(Extended to continual pre-training on a sequence of domains) Continual Pre-training of Language Models, Ke et al., ICLR 2023

MLM (Adapter) < MLM

Efficient tuning like adapter may not have sufficient trainable parameters for post-training

SoTA < DGA

SoTAs either only focus on preserving knowledge (KD), or adapting to the target domain, which are not enough

Adapting LLMs for A Dynamic World

A more ambitious vision is to make LLMs fully autonomous, which requires LLMs to self-initiate and adapt to new circumstances, so that the AI system can independently acquire new knowledge.

My vision: humans are intrinsically motivated by novelty to learn; same principle can also apply to AI system!

An Example of Autonomy

User: Finish the sentence in Vincent's tone System: Sorry, I didn't fully understand, do you mean:

Option-1: Vincent as the artist Vincent Van Gogh? **Option-2:** Any specific person called Vincent? It would be good if you could provide more information

In this example, the system

- Encounters a novel prompt (i.e., novelty) that the agent does not understand or there is ambiguity
- **Identifies** which aspects it understands, or which aspect is challenging (i.e., characterization)
- Adapts by posing questions or offering choices (i.e., adaptation)

- **Continual LLMs** to detect novelty (if the input is normal, it can simply give output to the application)
- **Relevance detection** to check • whether the novelty is relevant to the task it is focused on
- **Characterization** to identifying ٠ understandable and unclear parts
- **Planner** to generate a strategy for responses, e.g., asking questions to user
- Feedback needs to be continually integrated

Application

Knowledge base may be needed to augment and retain essential knowledge 35

Most existing works

are dedicated to the black part, which includes active research areas like **retrievalaugmented generation** and **continual learning**.

The other components remain largely unexplored!

Adapting LLMs for A Dynamic World

Active Research

Retrievalaugmented Generation

Post-training (continual learning)

Fully autonomous LLMs

