Adapting a Language Model While **Preserving its General Knowledge**

DA-training ---- General knowledge preservation and LM Adaptation

- DA-training (a.k.a., domain-adaptive pretraining or pre-finetuning or post-training) helps an LM achieves better results
- However, existing DA-training simply use MLM loss
 - It does not explicitly identify what should be preserved and what should be updated
- Two needs:
 - General language knowledge should be preserved as much as possible, because target domain data is not large enough to learn that
 - LM should be specialized/adapted to the target domain due to polysemy (focus of the existing methods, may destroy useful general knowledge)
- Our goal: a more informed adaptation
 - Preserve the general knowledge
 - Integrate the adapted domain knowledge and the preserved general knowledge

Background: Pruning

- Large LM is over-parameterized. Many parameters are prune-able without affecting the performance
- A popular way is to prune a parameter by its absolute value or importance (indicated by gradient)
- From gradient to Importance

$$\boldsymbol{\nabla}_{g_l} = \frac{\partial L_{\text{impt}}(x_m, y_m)}{\partial g_l} \qquad \boldsymbol{I}_l = \frac{1}{M} \sum_{\boldsymbol{M}} |\boldsymbol{\nabla}_{g_l}|$$

- L_{impt} is typically the cross-entropy loss since pruning is typically for a supervised task
- **Challenge**: if we use the domain data at hand and MLM as L_{impt} , ∇_{g_1} only indicates the importance score of domain-specific knowledge.
- The **key** is to decide the L_{impt}

Code, data, post-trained models: https://github.com/ UIC-Liu-Lab /DGA

Existing Post-training

Preserving the general knowledge by soft-masking

- **Idea:** Detect importance of units for general knowledge (inspired from pruning)
- Our **goal** is to estimate the importance of units for *general* knowledge, which requires the data used in pre-training the LM. However, this is not accessible to DA-training users.

- We use *robustness* as the proxy: if an importance has high score, it indicates that it is important to the LM's robustness because its change can cause the LM to change a great deal
- To compute the robustness, we input the domain data twice and compute the KL-divergence. f_1 and f_2 are the LM with different dropout masks (already implemented in the standard Transformer)
- Proposed solution: Soft-masking

general knowledge

Zixuan Ke¹, Yijia Shao², Haowei Lin², Hu Xu³, Lei Shu⁴ and Bing Liu¹ University of Illinois at Chicago¹, Peking University², Meta Al³ and Google Resaerch⁴

Proposed solution: Proxy KL-divergence loss

$$L_{\text{impt}} = \text{KL}(f_1(x_m), f_2(x_m))$$

 $\nabla I_{l} = (1 - \operatorname{Tanh}(\operatorname{Norm}(I_{l}))) \otimes \nabla I_{l}$

• Soft-mask the gradient to protect the important units for

- Integrate knowledge via contrastive learning
 - integrated with the general knowledge o^{gen}.

 - Contrastive learning:

L_{contrast}

Dataset

DGA

Unlabeled Domain Datasets			End-Task Classification Datasets				
Source	Dataset	Size	Dataset	Task	#Training	#Testing	#Classes
Reviews	Yelp Restaurant	758MB	Restaurant	Aspect Sentiment Classification (ASC)	3,452	1,120	3
	Amazon Phone	724MB	Phone	Aspect Sentiment Classification (ASC)	239	553	2
	Amazon Camera	319MB	Camera	Aspect Sentiment Classification (ASC)	230	626	2
Academic Papers	ACL Papers	867MB	ACL	Citation Intent Classification	1,520	421	6
	AI Papers	507MB	AI	Relation Classification	2,260	2,388	7
	PubMed Papers	989MB	PubMed	Chemical-protein Interaction Prediction	2,667	7,398	13

Meta Al Google Research

to the general knowledge in the LM

• Idea: encourage the learning of domain-specific knowledge in o^{full} that is not already in the general knowledge and yet related to and

• Obtaining general knowledge: plugin the importance score I

• Obtaining full knowledge: using all units in the layer

$$= -\log \frac{e^{\sin(o_m^{\text{full}}, o_m^{\text{full}+})/\tau}}{\sum_{j=1}^{N} (e^{\sin(o_m^{\text{full}}, o_j^{\text{full}})/\tau} + e^{\sin(o_m^{\text{full}}, o_j^{\text{gen}})/\tau})}$$