
Continual Pre-training of 

Language Models

Continual Domain-Adaptive pre-

training of LMs with Soft-masking

• Existing language models (LMs) once trained 

are fixed. 

• However, in the real world, data shifts 

constantly and new domains, events or topics 

keep emerging 

• This requires LMs to be updated to serve the 

user better

• Our focus: Continually learning/pre-training 

an LM using a sequence of domain corpora, 

which we call continual domain-adaptive 

pre-training

• Domain: an emerging or specialized event or 

topic

• Our goal:

• Catastrophic forgetting (CF) prevention

• Knowledge Transfer (KT), including 
backward and forward KT

Proposed DAS Model: Preservation of LM general knowledge, soft-masking, and contrastive knowledge integration

Setting: Continual Domain-adaptive Pre-

training

Zixuan Ke1, Yijia Shao2, Haowei Lin2, Tatsuya Konishi3, Gyuhak Kim1 and Bing Liu1

University of Illinois at Chicago1, Peking University2, KDDI Research 3

𝐿impt
general

= KL(𝑓1 𝑥𝑚 , 𝑓2 𝑥𝑚 )

• We study the problem of continual pre-training of 
language models

• We incrementally accumulate knowledge in the 
LM by

• Computing importance of units for general 
and domain knowledge, with different 𝐿impt

• Soft-masking the backward propagation 
based on importance (help CF and KT)

𝜵′𝑙 = 1 − Tanh(Norm(𝑰𝑙)) ⊗ 𝜵𝑙
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(B) Individual Fine-tuning

Given a pre-trained LM, 

continually domain-adaptive pre-

train a sequence of domains
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End-tasks

ASC: Aspect Sentiment Classification

After continual pre-training, the 

performance is evaluated by end-tasks

Each end-task corresponding to one 

domain and has its own training and 

testing set. It is trained individually and will 

not affect the domain-adaptive pre-training
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✓ w/o pre-training < pre-training < DAS

✓ +forgetting rate in NCL: it does suffer from forgetting

✓ Regularization-based methods (KD, EWC) and replay-based method (DER++) are all worse: focus on CF prevention is 

not enough

✓ Parameter-isolation method (HAT) preforms much worse: the full LM is needed for domain-adaptive pre-training

✓ Methods that tries to perform both KT and CF (DEMIX, BCL, CLASSIC): all weaker than DAS
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