# **Continual Pre-training of** Language Models

Pre-

trained

LM

training

Network

Training

No

#### **Continual Domain-Adaptive pre-**Proposed DAS Model: Preservation of LM general knowledge, soft-masking, and contrastive knowledge integration training of LMs with Soft-masking

- **Existing** language models (LMs) once trained are fixed.
- However, in the real world, data shifts constantly and new domains, events or topics keep emerging
- This requires LMs to be **updated** to serve the user better
- Our focus: Continually learning/pre-training an LM using a sequence of domain corpora, which we call **continual domain-adaptive** pre-training
- **Domain:** an emerging or specialized event or topic
- Our goal:
  - Catastrophic forgetting (CF) prevention
  - Knowledge Transfer (KT), including backward and forward KT

## Setting: Continual Domain-adaptive Pre-



### (A) **Continual Domain-adaptive Pre-training**

| Given a pre-trained LM,          |
|----------------------------------|
| continually domain-adaptive pre- |
| train a sequence of domains      |
|                                  |



### **(B) Individual** Fine-tuning



|                 | Categoi |
|-----------------|---------|
| No pre-training | 5       |
| Pre-training    | Non-Cl  |
| <u>ر</u>        |         |

NCL pre-training

| Sota     |
|----------|
| pre-     |
| training |



After continual pre-training, the performance is **evaluated** by end-tasks

Each end-task corresponding to one domain and has its **own** training and testing set. It is trained individually and will **not** affect the domain-adaptive pre-training

> **ASC-Restaurant** ASC-Phone ASC-Camera

End-tasks

- not enough

Zixuan Ke<sup>1</sup>, Yijia Shao<sup>2</sup>, Haowei Lin<sup>2</sup>, Tatsuya Konishi<sup>3</sup>, Gyuhak Kim<sup>1</sup> and Bing Liu<sup>1</sup> University of Illinois at Chicago<sup>1</sup>, Peking University<sup>2</sup>, KDDI Research<sup>3</sup>



Overall end-task performance (final performance)

|    | Domain         | Restaurant |       | ACL   |       | AI    |       | Phone |       | PubMed | Camera |       | Average |       | Forget R. |          |  |
|----|----------------|------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|---------|-------|-----------|----------|--|
| ry | Model          | MF1        | Acc   | MF1   | Acc   | MF1   | Acc   | MF1   | Acc   | MF1    | MF1    | Acc   | MF1     | Acc   | MF1       | Acc      |  |
|    |                |            |       |       |       |       |       |       |       |        |        |       |         |       |           |          |  |
|    | RoBERTa        | 79.81      | 87.00 | 66.11 | 71.26 | 60.98 | 71.85 | 83.75 | 86.08 | 72.38  | 78.82  | 87.03 | 73.64   | 79.27 |           |          |  |
| L  | DAPT RoBERTa)  | 80.84      | 87.68 | 68.75 | 73.44 | 68.97 | 75.95 | 82.59 | 85.50 | 72.84  | 84.39  | 89.90 | 76.40   | 80.89 |           |          |  |
|    | DAPT (Adapter) | 80.19      | 87.14 | 68.87 | 72.92 | 60.55 | 71.38 | 82.71 | 85.35 | 71.68  | 83.62  | 89.23 | 74.60   | 79.62 | _         |          |  |
|    | DAPT. (Prompt) | 79.00      | 86.45 | 66.66 | 71.35 | 61.47 | 72.36 | 84.17 | 86.53 | 73.09  | 85.52  | 90.38 | 74.98   | 80.03 | —         |          |  |
| ſ  | NCL            | 79.52      | 86.54 | 68.39 | 72.87 | 67.94 | 75.71 | 84.10 | 86.33 | 72.49  | 85.71  | 90.70 | 76.36   | 80.77 | 1.14      | 1.05     |  |
| ٦  | NCL (Adapter)  | 80.13      | 87.05 | 67.39 | 72.30 | 57.71 | 69.87 | 83.32 | 85.86 | 72.07  | 83.70  | 89.71 | 74.05   | 79.48 | 0.15      | -0.02    |  |
| ſ  | DEMIX          | 79.99      | 87.12 | 68.46 | 72.73 | 63.35 | 72.86 | 78.07 | 82.42 | 71.73  | 86.59  | 91.12 | 74.70   | 79.66 | 0.74      | 0.36     |  |
|    | BCL            | 78.97      | 86.52 | 70.71 | 74.58 | 66.26 | 74.55 | 81.70 | 84.63 | 71.99  | 85.06  | 90.51 | 75.78   | 80.46 | -0.06     | -0.19    |  |
|    | CLASSIC        | 79.89      | 87.05 | 67.30 | 72.11 | 59.84 | 71.08 | 84.02 | 86.22 | 69.83  | 86.93  | 91.25 | 74.63   | 79.59 | 0.44      | 0.25     |  |
|    | KD             | 78.05      | 85.59 | 69.17 | 73.73 | 67.49 | 75.09 | 82.12 | 84.99 | 72.28  | 81.91  | 88.69 | 75.17   | 80.06 | -0.07     | 0.01     |  |
|    | EWC            | 80.98      | 87.64 | 65.94 | 71.17 | 65.04 | 73.58 | 82.32 | 85.13 | 71.43  | 83.35  | 89.14 | 74.84   | 79.68 | 0.02      | -0.01    |  |
|    | DER++          | 79.00      | 86.46 | 67.20 | 72.16 | 63.96 | 73.54 | 83.22 | 85.61 | 72.58  | 87.10  | 91.47 | 75.51   | 80.30 | 2.36      | 1.53     |  |
|    | HAT            | 76.42      | 85.16 | 60.70 | 68.79 | 47.37 | 65.69 | 72.33 | 79.13 | 69.97  | 74.04  | 85.14 | 66.80   | 75.65 | -0.13     | -0.29    |  |
|    | HAT-All        | 74.94      | 83.93 | 52.08 | 63.94 | 34.16 | 56.07 | 64.71 | 74.43 | 68.14  | 65.54  | 81.44 | 59.93   | 71.33 | 3.23      | 1.83     |  |
| l  | HAT (Adapter)  | 79.29      | 86.70 | 68.25 | 72.87 | 64.84 | 73.67 | 81.44 | 84.56 | 71.61  | 82.37  | 89.27 | 74.63   | 79.78 | -0.23     | 23 -0.18 |  |
|    | DAS            | 80.34      | 87.16 | 69.36 | 74.01 | 70.93 | 77.46 | 85.99 | 87.70 | 72.80  | 88.16  | 92.30 | 77.93   | 81.91 | -1.09     | -0.60    |  |
|    |                |            |       |       |       |       |       |       |       |        |        |       |         |       |           |          |  |

✓ w/o pre-training < pre-training < DAS

✓ +forgetting rate in NCL: it does suffer from forgetting

✓ Regularization-based methods (KD, EWC) and replay-based method (DER++) are all worse: focus on CF prevention is

✓ Parameter-isolation method (HAT) preforms much worse: the full LM is needed for domain-adaptive pre-training ✓ Methods that tries to perform both KT and CF (DEMIX, BCL, CLASSIC): all weaker than DAS





- We study the problem of continual pre-training of language models
- We incrementally accumulate knowledge in the LM by
  - Computing importance of units for general and domain knowledge, with different  $L_{impt}$
  - Soft-masking the backward propagation based on importance (help CF and KT)

