Continual Training of Language Models for Few-shot Learning

Continual Post-Training

- Post-training (a.k.a., domain-adaptive pre-training or prefinetuning) helps an LM achieves better results
- CPT goes a step further
 - Continually improves an LM's ability to handle new and emerging domains.
- This is importance because
 - The world is dynamic (think about the ever-changing variants of COVID)
 - As re-training an LM from scratch is extremely expensive, incrementally updating the LM with the latest data is critical
- **Our goal:** Continually post-train an LM in a sequence of domains, without forgetting its learned skills

Proposed **CPT** Model: Parallel CL-plugin and Task Masking

- CL-plugin
 - Parallel adapters (shared by all domains)

Task Mask

• Train the mask $(e_l^{(t)})$: task embedding for layer l in task t)

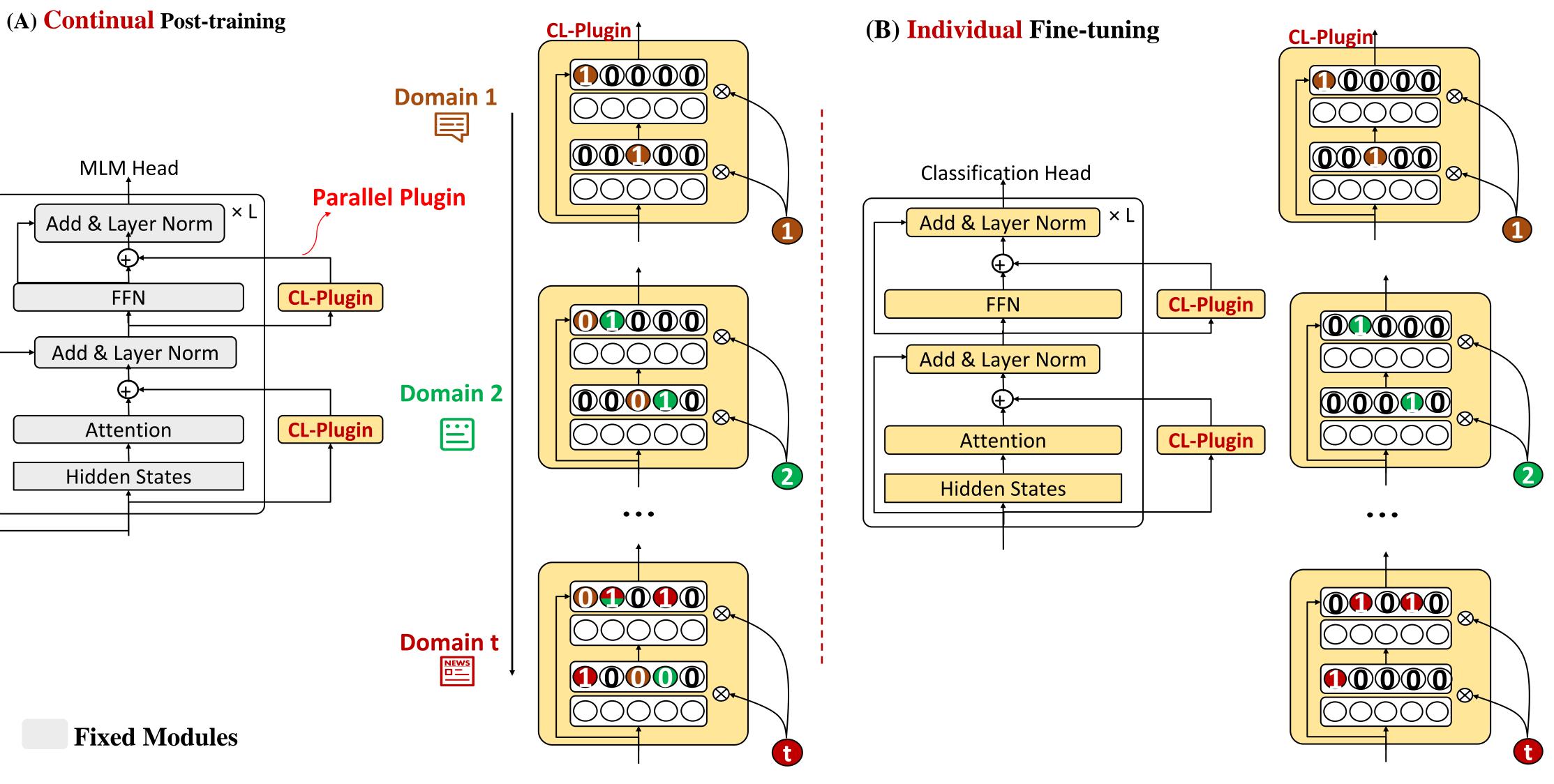
$$m_l^{(t)} = \sigma(e_l^{(t)}/\tau)$$

• Forward pass $(k_l^{(t)}:$ output of layer l in task t)

$$o_l^{(t)} = (k_l^{(t)} \otimes m_l^{(t)})$$

• Backward pass (*i*prev: all old tasks)

$$\widehat{\boldsymbol{V}}_{l}^{(t)} = \boldsymbol{V}_{l}^{(t)} \otimes (1 - \max(\{m_{l}^{(i_{\text{prev}})}\})))$$


 Catastrophic Butterfly Effect (make the mask a hard mask; used in gradient manipulation and forward pass in end-task fine-tuning)

$$m_l^{(t)} = \begin{cases} 1, & m_l^{(t)} > \theta_l \\ 0, & \text{Otherwise} \end{cases}$$

Code, data, post-trained models: https://github.com/UIC-Liu-Lab/CPT

Ye

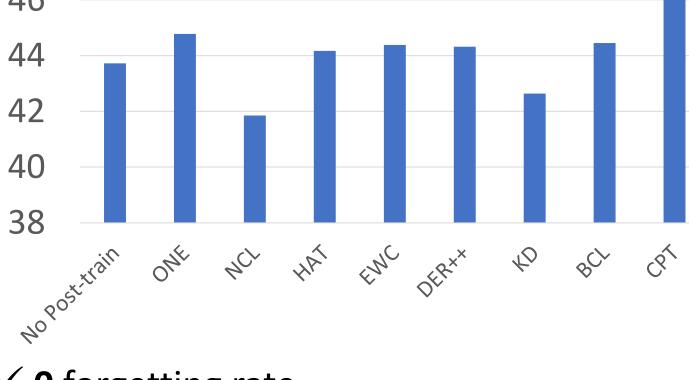
Zixuan Ke¹, Haowei Lin², Yijia Shao², Hu Xu³, Lei Shu⁴ and Bing Liu¹ University of Illinois at Chicago¹, Peking University², Meta Al³ and Google Resaerch⁴

MLM head for unsupervised post-training of the plugins only

Datasets

			1				
Unlabeled Domain Datasets			End-Task Classification Datasets				
Dataset	Source	#training	Dataset	Task	#training	#testing	#classes
elp Restaurant	Yelp Review	1,132,359	SemEval-res	Aspect Sentiment Classification	32	1,120	3
AI	AI Papers	707,368	SCIERC	Relation Classification	56	2,388	7
ACL	ACL Papers	1,208,449	ACL-ARC	Citation Intent Classification	48	421	6
AGNews	News Article	73,750	AGNews-FT	News Classification	32	7,568	4

Summary


- ✓ Proposed the problem of Continual Post-training
- ✓ Proposed an effective system CPT
- The key is to use **task masks** to protect the learned knowledge and prevent butterfly effect \checkmark Experimental results show that
 - It achieves no forgetting and outperforms a large number of baselines

Meta Al Google Research

Use the final post-trained model (with different masks) to evaluate the post-trained CPT

Experimental Results 48 46

✓ **0** forgetting rate

✓ Outperforms **13** SOTA baselines, including MLM, HAT, DER++, EWC, DEMIX etc.