

Continual Pre-training of Language Models

Zixuan Ke¹, Yijia Shao², Haowei Lin², Tatsuya Konishi³, Gyuhak Kim¹ & Bing Liu¹

- ¹ University of Illinois at Chicago
- ² Peking University
- ³ KDDI Research

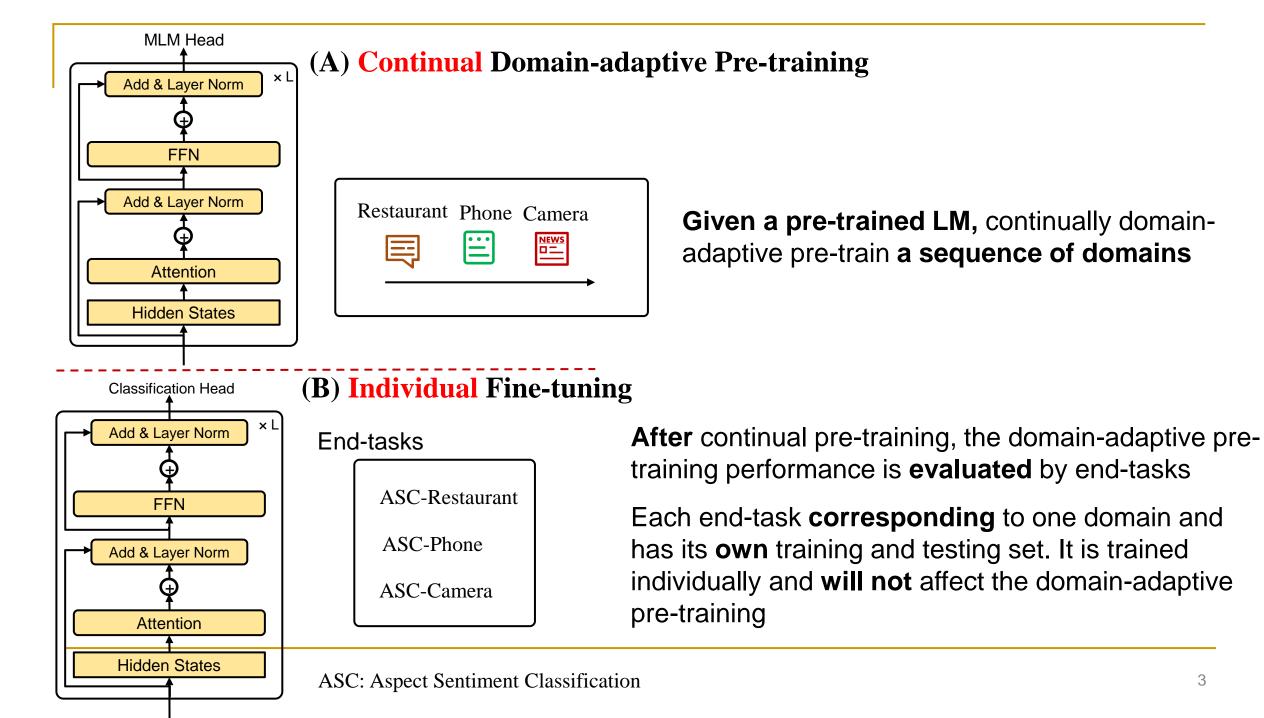
Code and data: https://github.com/UIC-Liu-Lab/ContinualLM

Continual Pre-training of Language Models

- Existing language models (LMs) once trained are fixed.
- However, in the real world, data shifts constantly and new domains, events or topics keep emerging
- This requires LMs to be updated to serve the user better

Our focus:

- Continually learning/pre-training an LM using a sequence of domain corpora, which we call *continual domain-adaptive pre-training*
 - Domain: an emerging or specialized event or topic



	Unlabeld	le Domain Datasets		End-Task Classification Datasets										
6	Source	Dataset/Domain Size		Dataset/Domain	Task	#Training	#Testing	#Classes						
		Yelp Restaurant	758MB	Restaurant	Aspect Sentiment Classification (ASC)	3,452	1,120	3						
	Reviews	Amazon Phone	724MB	Phone	Aspect Sentiment Classification (ASC)	239	553	2						
		Amazon Camera	319MB	Camera	Aspect Sentiment Classification (ASC)	230	626	2						
domains		ACL Papers	867MB	ACL	Citation Intent Classification	1,520	421	6						
L	Academic Papers	AI Papers	507MB	AI	Relation Classification	2,260	2,388	7						
		PubMed Papers	989MB	PubMed	Chemical-protein Interaction Prediction	2,667	7,398	13						
					Ŷ									
		inual domain tive pre-train			Individual Fine-tuning, after continual domain- adaptive pre-training									

Setting

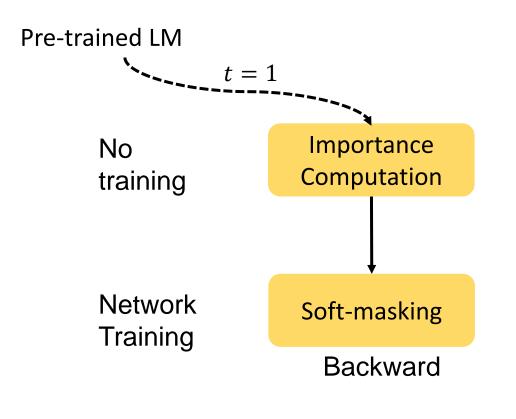
- Continually learning or pre-training a language model (LM) using a sequence of domain corpora
- No access to the data or corpora used in the original pre-training or the previously learned domains
- End-task doesn't know its domain belonging

Goals

- Catastrophic forgetting (CF) prevention
- Knowledge Transfer (KT), including backward and forward KT

Approach

DAS (continual Domain-Adaptive pre-training of LMs with Soft-masking)



Key ideas:

1) Detect importance of units for general and domain knowledge

2) Soft-mask the important units when training new tasks/domains

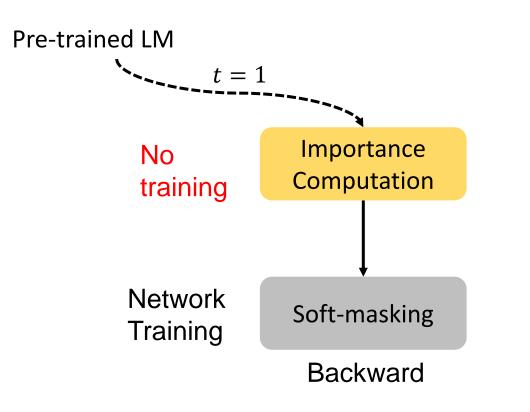
3) These can prevent forgetting and allow knowledge transfer

Key challenges:

1) How to detect importance for the two types of knowledge

2) How to soft-mask

Ke et al., Continual learning of language models, ICLR 2023



Goal: Compute the importance of units for **general** (and domain) knowledge

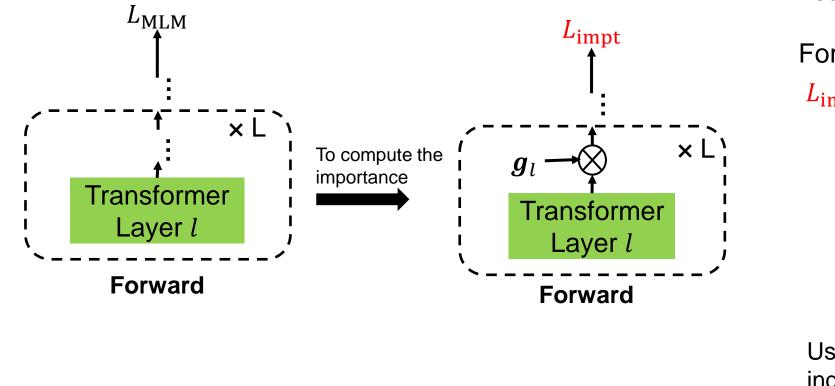
Why?

1) Not all units are important

2) Given the important units, we can protect them afterward

No training involved. We only need the importance

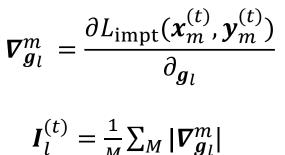
Importance Computation via Virtual Parameters



 g_l is the **virtual parameters.** Each virtual parameter $g_{l,i}$ in g_l corresponding to an attention head or neurons (units)

For domain knowledge,

 $L_{\text{impt}} = L_{\text{MLM}}$

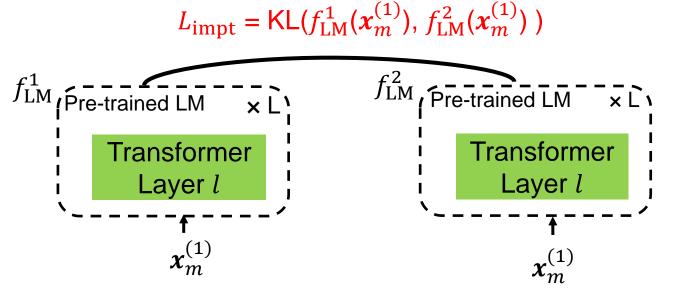


Use the **absolute gradient** to indicate importance^[1]

Ke et al., Continual learning of language models, ICLR 2023

[1]: Michel et al. Are sixteen heads really better than one? NeurIPS, 2019.

Importance Computation via Virtual Parameters



KL: How different are the two representations?

 f_{LM}^1 / f_{LM}^2 : Transformer with different dropouts

 $x_m^{(1)}$: We only use **the first domain** data because we want to keep the pre-trained general knowledge

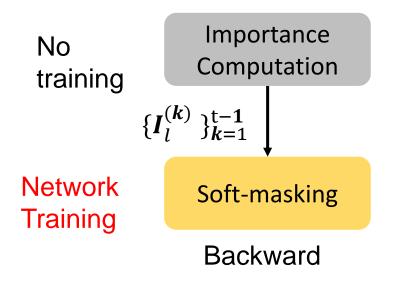
With the new L_{impt} , we can use the absolute gradient to indicate the importance (same as in domain knowledge)

For general knowledge, we leverage the random dropout in standard Transformer

Random dropout introduces **random noise**. Given the **same input**, the difference between the representations with different random noise indicates the **robustness**.

The units that are important to the robustness is likely to be important to the **general/pre-trained knowledge** because its change will **cause the pre-trained LM** change a great deal

Ke et al., Continual learning of language models, ICLR 2023



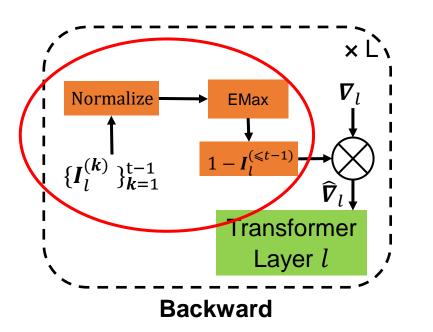
Goal: Soft-mask the **gradient** based on the importance

Why?

1) We need to protect the important units when training new domain

2) We want to allow knowledge transfer

Soft-masking



First, we normalize the importance so that they are comparable

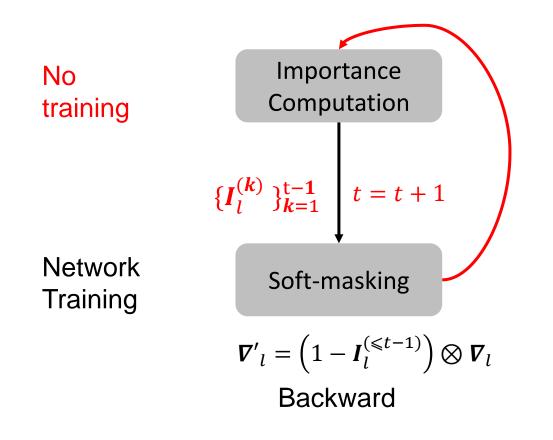
$$I_l^{(k)} = \operatorname{Tanh}(\operatorname{Norm}(I_l^{(k)}))$$

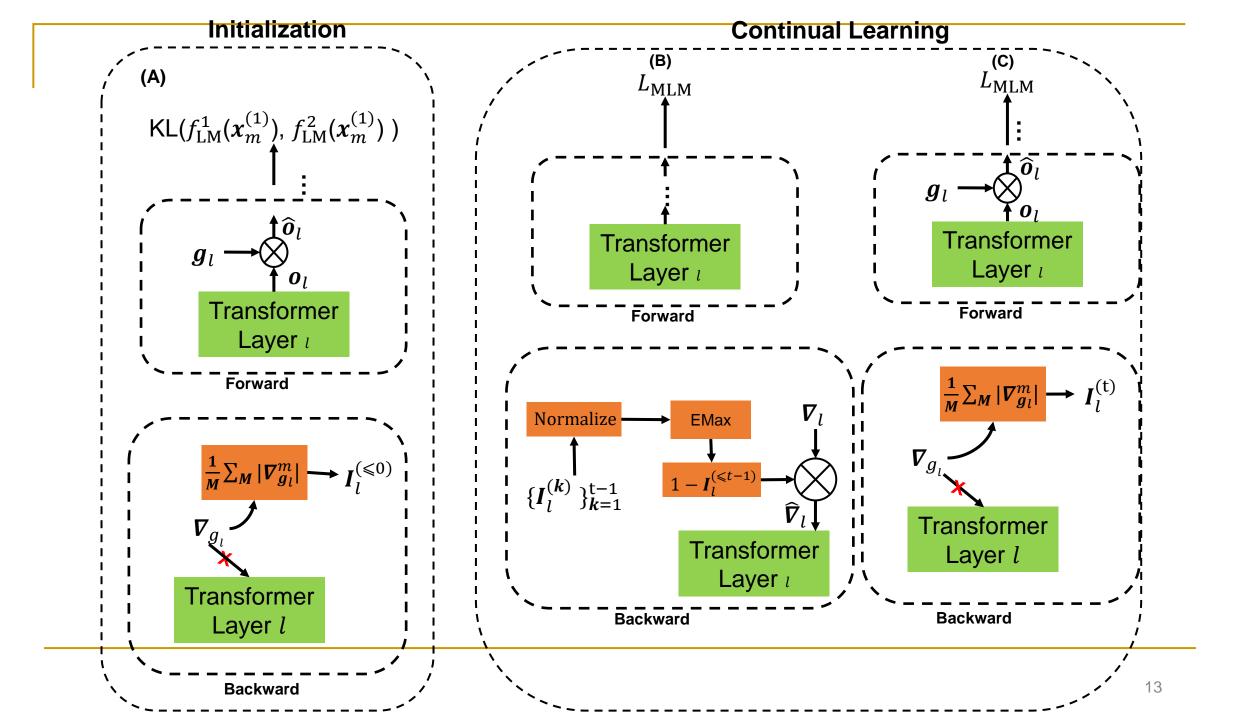
Second, we accumulate the importance

$$\boldsymbol{I}_l^{(\leqslant t-1)} = \operatorname{EMax}(\{\boldsymbol{I}_l^{(t-1)}, \, \boldsymbol{I}_l^{(t-2)})\}$$

Third, we soft-mask the gradient (only in backward pass)

$$\boldsymbol{\nabla}'_{l} = \left(1 - \boldsymbol{I}_{l}^{(\leqslant t-1)}\right) \otimes \boldsymbol{\nabla}_{l}$$





Kesults				0.10							orman	,					
	Catagory	Domain	Restaurant		ACL		AI		Phone		PubMed	Camera		Average		Forget R.	
	Category	Model	MF1	Acc	MF1	Acc	MF1	Acc	MF1	Acc	MF1	MF1	Acc	MF1	Acc	MF1	Acc
No pre-training	Non-CL	RoBERTa	79.81	87.00	66 11	71.26	60.98	71.95	92 75	86.08	72.29	70 02	87.03	72.64	79.27		
		DAPT RoBERTa)	80.84	87.00 87.68	66.11 68.75	71.26	68.97	71.85 75.95	83.75 82.59	85.50	72.38 72.84	78.82 84.39	89.90	73.64	80.89		
Pre-traing		DAPT (Adapter)	80.19	87.14	68.87	72.92	60.55	71.38	82.71	85.35	71.68	83.62	89.23	74.60	79.62	_	
		DAPT. (Prompt)	79.00	86.45	66.66	71.35	61.47	72.36	84.17	86.53	73.09	85.52	90.38	74.98	80.03	_	-
NCL pre-training		NCL	79.52	86.54	68.39	72.87	67.94	75.71	84.10	86.33	72.49	85.71	90.70	76.36	80.77	1.14	1.05
	ر	NCL (Adapter)	80.13	87.05	67.39	72.30	57.71	69.87	83.32	85.86	72.07	83.70	89.71	74.05	79.48	0.15	-0.02
	ſ	DEMIX	79.99	87.12	68.46	72.73	63.35	72.86	78.07	82.42	71.73	86.59	91.12	74.70	79.66	0.74	0.36
		BCL	78.97	86.52	70.71	74.58	66.26	74.55	81.70	84.63	71.99	85.06	90.51	75.78	80.46	-0.06	-0.19
SoTA pre-training		CLASSIC	79.89	87.05	67.30	72.11	59.84	71.08	84.02	86.22	69.83	86.93	91.25	74.63	79.59	0.44	0.25
oon pic training	CL	KD	78.05	85.59	69.17	73.73	67.49	75.09	82.12	84.99	72.28	81.91	88.69	75.17	80.06	-0.07	0.01
	Post-train	EWC	80.98	87.64	65.94	71.17	65.04	73.58	82.32	85.13	71.43	83.35	89.14	74.84	79.68	0.02	-0.01
		DER++	79.00	86.46	67.20	72.16	63.96	73.54	83.22	85.61	72.58	87.10	91.47	75.51	80.30	2.36	1.53
		HAT	76.42	85.16	60.70	68.79	47.37	65.69	72.33	79.13	69.97	74.04	85.14	66.80	75.65	-0.13	-0.29
		HAT-All	74.94	83.93	52.08	63.94	34.16	56.07	64.71	74.43	68.14	65.54	81.44	59.93	71.33	3.23	1.83
	L L	HAT (Adapter)	79.29	86.70	68.25	72.87	64.84	73.67	81.44	84.56	71.61	82.37	89.27	74.63	79.78	-0.23	-0.18
		DAS	80.34	87.16	69.36	74.01	70.93	77.46	85.99	87.70	72.80	88.16	92.30	77.93	81.91	-1.09	-0.60

Overall end-task performance (final performance)

w/o pre-training < pre-training < DAS</p>

 \mathbf{D} 1.

- +forgetting rate in NCL: it does suffer from forgetting
- Regularization-based methods (KD, EWC) and replay-based method (DER++) are all worse: focus on CF prevention is not enough
- Parameter-isolation method (HAT) preforms much worse: the full LM is needed for domain-adaptive pre-training
- Methods that tries to perform both KT and CF (DEMIX, BCL, CLASSIC): all weaker than DAS

Ke et al., Continual learning of language models, ICLR 2023

*Naïve continual learning (NCL): continual learning without any specific technique

- We study the problem of continual pre-training of language model
- We **incrementally** accumulate knowledge to the LM by
 - Computing importance of units for general and domain knowledge, with different L_{impt}
 - Soft-masking the backward propagation based on importance (help CF and KT)

• We will have in-person poster @ ICLR23

Tue May 02 11:30 a.m. — 1:30 p.m. (Kigali Time) @ MH1-2-3-4 #90

- We have benchmarked many SoTA baselines
 - For continual end-task learning
 - <u>https://github.com/ZixuanKe/PyContinual</u>
 - □ For continual domain-adaptive pre-training
 - <u>https://github.com/UIC-Liu-Lab/ContinualLM</u>

