Bridging the Preference Gap between Retrievers and LLMs

Existing RAG studies retrievers and LLMs

separately

Zixuan Ke¹, Weize Kong², Cheng Li², Mingyang Zhang², Qiaozhu Mei³ and Micheal Bendersky² University of Illinois at Chicago¹, Google Research², University of Michigan³

Bridge the Preference Gap

• Bridge Model:

- Unlike previous RAGs that update LLMs, retrievers, or both. BGM connects a frozen LLM and a frozen retriever through a seq2seq bridge model
- Input: Top-K passages given by a frozen retriever
- Output: a sequence of passages (the sequence length is varied, due to **selection** or **repetition**)
- Goals:
 - Adapt the retrieved information to the LLM's preference.
 - Not only ranking, but also selection and potentially repetition

Train the Bridge Model

- Step 1: Supervised Learning
 - Data Synthesis: we obtain the silver passage sequence via greedy search
 - iteratively add the next best candidate passage to the sequence and measure the results based on the resulted task performance. Stop until no improvement can be made

• Step 2: Reinforcement Learning

- Reward: Performance of downstream tasks
- Policy model: bridge model
- Action space: passage IDs

Model Metric	NQ EM	HotpotQA EM	Email BLEU	Book BLEU
Naive	33.07	28.01	5.57	11.5
Random	43.71	26.10	8.55	8.61
GTR	43.79	25.80	9.76	8.75
PSR	43.60	25.51	9.08	9.14
BGM	45.37	35.64	10.42	12.07

Table 2: Performance of all 4 datasets.

PPO-like

✓ BGM achieves the highest

Book dataset has less improved: retrieval is not always essential! Naïve can outperform other baselines as well ✓ **GTR < BGM:** Similar results given by GTR and BGM in NQ: most instances in NQ need only one passage

✓ **PSR < BGM:** Ranking (PSR) is not sufficient. Selection must be taken into account

✓ (in the paper) Naïve manual threshold applied to reranking model is also insufficient

