
Bridging the Preference Gap 

between Retrievers and LLMs

• Existing RAG studies retrievers and LLMs 

separately

• Retriever: ranking is the most important as 
human read from top to bottom

• LLM: exhibits preferences different from 
humans!

• There is a preference gap!

• Our goals:

• Investigate the existence of the preference gap

• Bridge the gap via a seq2seq bridge model 

• Evaluate BGM with diverse tasks: QA and text 
generation, publicly available and personalized 
datasets. 
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• Bridge Model:

• Unlike previous RAGs that update LLMs, retrievers, or both. BGM 
connects a frozen LLM and a frozen retriever through a seq2seq
bridge model

• Input: Top-K passages given by a frozen retriever

• Output: a sequence of passages (the sequence length is varied,
due to selection or repetition)

• Goals: 

• Adapt the retrieved information to the LLM’s preference.

• Not only ranking, but also selection and potentially repetition

• Train the Bridge Model

• Step 1: Supervised Learning

• Data Synthesis: we obtain the silver passage sequence via 
greedy search

• iteratively add the next best candidate passage to the 
sequence and measure the results based on the resulted 
task performance. Stop until no improvement can be made

• Step 2: Reinforcement Learning

• Reward: Performance of downstream tasks

• Policy model: bridge model

• Action space: passage IDs

✓ BGM achieves the highest

✓ Book dataset has less improved: 

retrieval is not always essential! Naïve 

can outperform other baselines as well

✓ GTR < BGM: Similar results given by 

GTR and BGM in NQ: most instances in 

NQ need only one passage

✓ PSR < BGM: Ranking (PSR) is not 

sufficient. Selection must be taken into 

account

✓ (in the paper) Naïve manual threshold 

applied to reranking model is also 

insufficient
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Preference Gap on Ranking and Selection

NQ HotpotQA Email Book

Bridge the Preference Gap

• Preliminary Experiments:

• Retrieve passages using off-the-shelf retriever

• Use top K of the retrieved passages as additional context for 
a frozen Palm2-S LLM. 

• Key Observations:

• Randomizing the ordering of top-5 retrieved items 
(passages), the performance of RAG only varies by around 
1%

• The variation exceed 5% when the LLM is only presented 
with the top-1 passages under each order

• Lesson:

• The general belief in ranking does not apply to LLMs!

• We need to bridge the preference gap!

[𝑖𝑑1] this bible is even 

more beautiful than...

[𝑖𝑑0] Wow! it's even 

more beautiful than i

anticipated! ….

Step 1

Collect silver passage sequence 

Step 2

Train a supervised bridge 
model (a Seq2Seq model)

Step 3

Optimize a policy against the reward 
using reinforcement learning
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Passage Content
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adding the 
passage to the 
already 
selected 
passages, until 
no 
improvements 
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The IDs are 
converted to the 
corresponding 
passage in the 
next step

[Finish the passage in 
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