Litelong and Continual Learning
Part Il — Slides for June 16, 2022

Bing Liu and Zixuan Ke
Department of Computer Science
University of lllinois at Chicago

A short PhD course (8 hours) given at Aalborg University on June 14 and June 16, 2022



Topics

Lifelong or continual learning

Early research on lifelong learning

Continual learning based on deep neural networks
Continual learning in the open-world

Summary
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Let’s Recall What We Learned on Tue.

Continual Learning

o After a task is learned, its training data (at least a large portion of it)
IS no longer accessible.

o Earlier work on lifelong/continual learning mainly builds separate
models for knowledge transfer.

Deep Continual Learning:
2 We want one single neural model to be able to do well on all tasks

2 What will happen?
Catastrophic forgetting
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Let’s Recall What We Learned on Tue.

Deep Continual Learning:

Catastrophic forgetting
0 Intuitively

The 2D plane example
0 Mathematically

We cannot directly estimate the expected loss for previous tasks because their
data is not accessible
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Let’s Recall What We Learned on Tue.

Deep Continual Learning:

Evaluation

0 Possible scenarios
Catastrophic forgetting ==
No Forgetting
Problematic Learning &=
Forward Transfer
Backward Transfer

0 Quantity Metrics
Meta Table

)
))

)
]

))
))
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Let’s Recall What We Learned on Tue.

= Deep Continual Learning:
p g R : The performance of the model on task T, after

continually training till task T,
Testing task

W

Tasks trained so far

T Ri1

T Ro1 R,

T3 Rs1 R32 Rs3

T4 R4 1 R4,2 R4,3 R4 4

Ts Rs 1 Rs, Rss  Rss  Rss
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Let’s Recall What We Learned on Tue.

Testing task

_ T T T, T, T ...
Tasks trained so far : Z > >
Tl I:\>1,1
T, R R
> * = Forgetting rate (FR): ﬁZiT:‘f R;; — R
T3 I:a3,1 RS 2 R3 3 B 1
. T-1
T, R,1 Ry, Ris  Rus = Backward Transfer (BWT): ﬂziﬂ Rii — R;;
Tg Rs 4 Rs» Rs 3 Rs 4 Rss
v T

Y. Liu et al,. Mnemonics training: Multi-class incremental learning without forgetting. CVPR, 2020
Continual Learning, June 14 and 16, 2022 Lopez-Paz and Ranzato, Gradient Episodic Memory for Continual Learning, NIPS 2017 7



Let’s Recall What We Learned on Tue.

Testing task

. Tl T2 T3 T4 T5 ......
Tasks trained so far >

T —

1 Ris > | R,

Average
T Rz, R J
T3 Rs, Rs» Rs3
T4 Rs1 R4,2 Rss R4,4
T\,,.> Rs, Rs» Rs 3 Rs 4 Rss
R. ... > [Rr

Instead of drawing a curve for one
single task, Some use the
progressive accumulated average

Rebulffi et al,. iCaRL: Incremental classifier and representation learning. CVPR 2017
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Let’s Recall What We Learned on Tue.

Testing task

Tl T2 T3 T4 T5 ......
R, R, R, R, Re ... Some introduce a Non-
Tasks trained so far continual baseline: train
T, . separate model for each
11 task
ik Rz Rz 1 71
Forward Transfer (FWT): =—>.;=; Ri; — R;
Ts R34 Rs» Rss r-1 '
T R R R R We can see whether there is forward
4 4.1 42 4.3 44 transfer (if forward transfer, FWT > 0)
T5 Rs, Rs Rs3 Rs.4 Rs5
| A

Lopez-Paz and Ranzato, Gradient Episodic Memory for Continual Learning, NIPS 2017
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Let’s Recall What We Learned on Tue.

Testing task

Tasks trained so far

Tl T2 T3 T4 T5 ......
I:\)1,1
R2,1 R2,2
R3,1 R3,2 R3,3
Rs1 Raz Ry3 Ra4
I:Q5,1 R5.2 R5,3 R5,4 R5,5
1T
R, ... F =111

After continual training, average over all seen tasks

(the last row) can give us a high-level evaluation of the
model. This is a popular number to report the results.
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Let’s Recall What We Learned on Tue.

Deep Continual Learning:

Evaluation
0 Possible scenarios
0 Quantity Metrics
o Popular non-continual learning baselines
Multi-task Learning (MTL)
Usually regarded as upper bound
Individual task Learning (ONE)
Train a separate model for each task (no forgetting/transfer)
Naive continual learning (NCL)

Train tasks sequentially, without taking care of forgetting (catastrophic
forgetting) prevention

Continual Learning, June 14 and 16, 2022
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Let’s Recall What We Learned on Tue.

= Deep Continual Learning:

= Evaluation

= Goals
0 Prevent forgetting
0 Encourage forward and backward transfer

Continual Learning, June 14 and 16, 2022
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Let’s Recall What We Learned on Tue.

= Deep Continual Learning:
= Evaluation
= Goals
= Approaches
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Let’s Recall What We Learned on Tue.

Replayed-based
0 Use an explicit memory to maintain a subset of training samples, or

o Learn a data generator

Regularization-based
o Add a regularization term to loss function

Architecture-based
o Each task dedicates a different sub-network

Continual Learning, June 14 and 16, 2022
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Let’s Recall What We Learned on Tue.

Replayed-based

o GEM

Store raw samples
Optimize the training by constraining the previous loss not to increase

o LAMOL
Background: Language model
Finetune the language model as data generator and task solver at the same
time
0 Use a unified format (QA) for all tasks

When a new task arrives, the LM first generates pseudo-samples, and then
combines both the generated and new samples for learning.

Continual Learning, June 14 and 16, 2022
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Let’s Recall What We Learned on Tue.

= Play with the model
o https://github.com/ZixuanKe/PyContinual

= Regularization-based
o Add a reqgularization term to loss function

Continual Learning, June 14 and 16, 2022
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https://github.com/ZixuanKe/PyContinual

Let’s Recall What We Learned on Tue.

Regularization-based
o Regularization = loss + penalty term

o DER++
Distill previous knowledge (network response) to current model by adding a
distillation penalty term

o EWC
Probably the most well-known continual learning system (not the best
performing though)
Compute the prior based on parameter importance (fisher matrix, base on
gradient) to constrain the update

Continual Learning, June 14 and 16, 2022
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Approaches

Replayed-based
0 Use an explicit memory to maintain a subset of training samples, or

o Learn a data generator

Regularization-based
o Add a regularization term to loss function

Architecture-based
o Each task dedicates a different sub-network

Continual Learning, June 14 and 16, 2022
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Approaches

Both replayed-based and regularization-based have forgetting
o Can we have some methods that guarantee no forgetting at all?
o Yes! Architecture-based

o0 NOTE

No forgetting does not mean we can solve the CL problem

0 It does largely solve the Task-incremental problem (TIL), because it can totally
avoid forgetting

we will see that transferring knowledge is still not easy
0 It does not solve class/domain-incremental learning (CIL/DIL) problem
Architecture-based cannot be directly used for task agnostic scenarios

We will see why

Continual Learning, June 14 and 16, 2022 19



Architecture-based

What is a sub-network?

S b " I * " Traditionally:
o Subnetwork = mask * networ
. . . h=f(x,W)
o The mask can be applied at different locations
Parameters At parameter level
Outputs

f(x,M © W)

At output level
hE = HE@[’I;

o We will see both

Continual Learning, June 14 and 16, 2022 20



Architecture-based: output-based

HATIS]

o ldea

Given a static network, if one can restrict the training to a sub-network, and
make sure this sub-network is not changed by any subsequent tasks.
Forgetting can be prevented.

2 How does it work?
How to find the sub-network?
How to make sure it is not changed?

[5]: Serra et al., Overcoming catastrophic forgetting with hard attention to the task, ICML 2018
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Architecture-based: output-based

HAT A positive number &M
o Forward: find the sub-network \ T~
Input the task identifier t, together with the —
data ?ﬁ '
The tis used to train a task embedding. !
A pseudo-gate function (sigmoid) is [ Embedding
applied on the task embedding, so that a T
gate is masked on the output of each layer \
The mask gives us a sub-network for the
task t Input task identifier

together with the data
After training task t, the mask is stored

Continual Learning, June 14 and 16, 2022
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Architecture-based: output-based

Additional training Since it is binary, 1-x

trick means tosetitto O
HAT /

o Backward: make sure previous sub- )
networks are not Changed Smax-) Compe:nsation RN B 7-\7-1) 4 P —— ®
g
When training the new task, we block the 0 | » ®
previous tasks’ sub-networks >
0 By setting their gradient to 0 [ Emb;dding ] Expand La;er

1

Accumulated sub-
network
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' Architecture-based: output-based

= HAT

o A dynamic illustration

= Task O is the first task. After learning it, we
obtain its useful units/neurons, marked Iin
orange with a 1 in each unit, which serves as
a mask for future tasks.

= Inlearning task 1, we found that task 1 is not
similar to task 0. Those useful units for task O
IS masked (with O in those orange units or
cells in the matrix on the left). The process
also learns the useful units for task 1

Task O

Tas

Task 1

k2

Before Training

]
]
H
]
]

] A B |
OB LLarit] CIEin]
OEER COOag Coc]
JHDRRR Laa o]
] — [ o | — | (I

After Training

[0l 1]1]1
o/[o]ENEN 0
[o/EN[0][0] /0
o][oj[o/[0]0]
0j[o/[o][0][0]

[ICNojolo)
[Mj1]ofoj
[oj1]1j0
ol/oJ[o][o][EN
0j[o][o]l0][0]

[Caojojo
1]ojojolid
1 jofol7]
M) 1] 1[0 1
[o/il[o[o][0]
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' Architecture-based: output-based

= HAT

o How is it performing

= Datasets
o CIFAR10, CIFAR100, MNIST, SVNH

= Metrics
0 Forgetting Rate

Continual Learning, June 14 and 16, 2022
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‘ Architecture-based:

= HAT
o How does it perform

output-based

=0.21

-0.61

3 4 5 6 1 8

[Se I

i

wmm = Multitask EWC | WF
SGD s [IMM-Mode = | FL
SGD-F === [NMM-Mean === PythNet

empgmm HAT

Figure 3. Average forgetting ratio pS' for the considered ap-
proaches (10 runs).

Continual Learning, June 14 and 16, 2022
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Architecture-based: output-based

HAT

o How about pros and cons?

o Pros

Almost no forgetting

0 Because different tasks are using different sub-networks

Now we know why the architecture-based
. Cons model solves the Task-incremental

Task information (task-id) is needed in testing/ learning problem, but not class/domain-
incremental problem
o Can only be used for Task-incremental Learning

The network capacity can easily run out

Only very weak knowledge transfer can happen

0 Tasks are separated into different subnetworks (though they may share some
parameters, but used parameters cannot change)

Continual Learning, June 14 and 16, 2022
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Architecture-based: output-based

HAT

o Cons
Task information is needed in testing
o Can only be used in Task-incremental Learning
The network capacity can easily run out

Only very weak knowledge transfer can happen

0 Tasks are separated into different subnetworks (though they may share some
parameters, but used parameters cannot change)

o Can we address the “capacity quickly ran out” issue?

Yes. Let's change a bit of our mindset
0 If you want your model to perform well, what do you do?

Continual Learning, June 14 and 16, 2022
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Architecture-based: parameter-based

Supsuplo]

0 ldea: Traditionally:
If you want your model to perform well, what do you do?

you want yo P Y F(x, W)

o Train the weights? ’
Supsup provides an alternative view
0 Keep the weight random
o Train the mask to select sub-networks
0 This is called “supermask”
Different tasks use different masks

0 Forgetting is thus prevented
0 This is called “superposition”

Supermasks:

f(x,M W)

[6]: Wortsman et al., Supermasks in Superposition, NeurlPS 2020
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Architecture-based: parameter-based

= Supsup

o How does it work?

= The weights are not
trained.

= But masks are trained

to choose the network

o Masks are simply the

Indices, which can be
efficiently saved

Supermask 1

€

Task 1 .

f(x,M'oW)

Supermask 2

Q

O

Task 2 [}

fx, M2 W)

Supermask 3

offe

O

Task 3 .

f(x,M> o W)

Continual Learning, June 14 and 16, 2022
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Architecture-based: parameter-based

= Supsup

o How does it perform

= Datasets

o MNIST, CIFAR100
= Metrics

0 Progressive Results

Continual Learning, June 14 and 16, 2022
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Architecture-based: parameter-based

= Supsup

o How does it perform

Extremely large
number of tasks

Why this is possible?

1 0.95 !
30'8 (.94

& —————a—
§ﬁﬁ 0.931 i
= i
0.4 . 0.921 3

0 500 1000 1500 2000 2500 .91/ , ,
Num Tasks Learned 0 1000 2000
SupSup (NNs, H) —4— SupSup (GNu, H) -4~ SupSup (GNu, G) -4- Upper Bound ---}-+ Lower Bound

Figure 4: Learning 2500 tasks and inferring task identity using the One-Shot algorithm. Results for
both the GNu and NNs scenarios with the LeNet 300-100 model using output size 500.

Continual Learning, June 14 and 16, 2022
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Architecture-based: parameter-based

Supsup
o Pros and Cons?

o Pros:
The capacity is much better than HAT, since there can be almost infinite
different number of masks in a network

o Cons:

Need additional task identification technique to deal with class-incremental or
domain-incremental

For network that is not randomly initialized, i.e., pre-trained network, this
method will not be working

Still, Only very weak knowledge transfer can happen

Continual Learning, June 14 and 16, 2022
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Architecture-based: parameter-based

Since both HAT and Supsup can solve the forgetting problem
and they are mainly for task-incremental learning,

o Knowledge transfer is highly desired

But one common issue of both HAT and SupSup is

o There is only very weak knowledge transfer
for Supsup, no transfer at all

o We want our CL learner to achieve both
Forgetting prevention, and Knowledge transfer

o Can we achieve these?

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

A couple of models can achieve both
2 We will introduce some of them

o BCL

o CLASSIC

o CAT

These are mainly NLP models, so we need a bit more
background of NLP

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

M b NLP
!
ore about
| Layer

)/ Adapter
| Layer

[eXeXeXeXeXel

1)
! |
' : :
Background ; T R s
D g ' 2x Feed-forward - - up-project
: layer : 1
1
| - :
) ' p
: '

Pre-trained Language Model
0 RoBERT, GPT, T5...
0 How to use
Fine-tuning
Parameter-efficient tunning

Fix the language model, train additional added module (e.g., insert randomly
Initialized fully-connected networks to each Transformer layers)

The added module is called the adapter.

In this way, one only needs to train a tiny portion of the parameters to
achieve similar results as fine-tuning

Adapter

Feed-forward layer

Multi-headed
attention

Feedforward
down-project

. [0C00000]
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Architecture-based: beyond forgetting prevention

The next few approaches are based on Adapter

o Work together with a large-scale pre-trained model (typically,
Transformer)
o Belong to the line of parameter-efficient fine-tuning
Adapter

Prompt
Prefix

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

Adapter-based parameter-efficient fine-tuning

o Attractive to continual learning because

The cost of such parameter-efficient modules is small

0 E.g., a prompt may contain only 7k parameters (Transformer-based model can
easily reach 150M+ parameters)

We can cleverly avoid training/updating the language model (LM)
0 Forgetting thus will not happen in the LM
0 We only need to focus on the tiny simple adapter
Many CL methods (e.g., HAT, Supsup) can be applied to the adapter

Continual Learning, June 14 and 16, 2022 38



Architecture-based: beyond forgetting prevention

So far, we know
o by using the adapter and CL methods, we can avoid forgetting.

But how do we enable knowledge transfer?

We need a bit more background in order to understand the
models that we will study.

Sabour et al., Dynamic routing between capsules. In NIPS, 2017

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

Background

o Capsule Network
Some materials explain this in very complicated ways. Let’'s make it simple

It is a network type, just the same as a standard fully-connected network, except
o From Neurons to Capsules

QOO00) ——

LN ]
e,
L]
. "

........... Capsules

Neurons Neurons

In a typical network, a layer consists of a set of neurons. In a capsule network, a
layer consists of capsules (by reshaping)

Why? So that a layer can encode more information

Sabour et al., Dynamic routing between capsules. In NIPS, 2017
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Architecture-based: beyond forgetting prevention

Background

o Capsule Network
Some materials explain this in very complicated ways. Let’'s make it simple
It is a network type, just the same as a standard fully-connected network, except

0 From Neurons to Capsules
0 From weight connection to Routing

00000 E

00
Q0OQ0O

Dynamic Routing routes/groups
similar capsules to next layer. It
is like an unsupervised

E } clustering process

Continual Learning, June 14 and 16, 2022 41
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Architecture-based: beyond forgetting prevention

Background

o Capsule Network
Why is this attractive to continual learning?
0 If we regard each capsule as the feature from each task

0 The capsule network can help us group similar tasks together!
Similar tasks means there are transferrable knowledge among them

®
00000 33
OO . :
O Dynamic Routing routes/groups
FCN = similar capsules to next layer. It

is like an unsupervised
} clustering process

Q000

[8

Sabour et al., Dynamic routing between capsules. In NIPS, 2017

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

BCLL]

o ldea

Based on Adapter, HAT and capsule
network

Adapter avoid forgetting in the LM . g
HAT avoids forgetting in the adapter |

Capsule network enables knowledge  agapter-sert Adapter
transfer (A)

o How does it work?

[7]: Ke et al., Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks, NAACL 2021

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

Task Specific
Module

(TsM)

= BCL!

Feed-forward
layer

Feed-forward !
layer 1 \ o Sharing
| [N

o How does it work?

= TSM is HAT Voae | " ®
= KSM is Capsule i

Adapter-BERT Adapter B-CL CLA

(A) (B)
network
Knowledge ________________/ __. .
Sharing ,/" 85
Module Knowledge \
(KSM) E Sharing H
| Capsule Layer :
1 (KCL) t i [ TaskID
: / f pz(‘ ) \, / | | Embedding
: i | lookup and
| i ® — o (se®
! Task 00000 00000 e = o)
| Capsule fi(ll(t)) :
 LverC) (OC000) . 00000 :
\ Folh®) gl o (RD) e £, ()]
. Input features | OO OOO h(l,) ,,’ Input Task ID

___________________________________________

[7]: Ke et al., Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks, NAACL 2021

Continual Learning, June 14 and 16, 2022 44



Architecture-based: beyond forgetting prevention

= BCL!

o How does it perform?

= Itis used to solve an NLP problem
0 Aspect Sentiment Classification.

[7]: Ke et al., Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks, NAACL 2021

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

= Background

o Aspect Sentiment Classification

Task ID

Domain/Task

One Training Example(in that domain/task)

1
2
3

Vacuum Cleaner [CF]
Desktop [KT]
Tablet [KT]

This vacuum cleaner sucks !!!
The keyboard is clicky .
The soft keyboard is hard to use.

4 (new task)

Laptop

The new keyboard sucks and is hard to click!

We can see both forgetting (CF)
prevention and knowledge
transfer (KT) are needed

[7]: Ke et al., Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks, NAACL 2021

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

= BCL

o How does it perform
= Datasets
0 Aspect Sentiment Classification

= Metrics
o FWT, BWT

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

Scenario Category Model Acc. MF1

B C L BERT 0.8584 0.7635

Non-continual = o BERT [ onNe | 0.8596 0.7807
Learning

. W2V 07701  0.5189
o How does it perform T T
Adapter-BERT [ Nct |1 0.5403  0.4481

BWT W2V 0.8269 0.7356

. KAN || 0.8549 0.7738
There are many baselines that we SRK || 0.8476 0.7852

have already seen (see red boxes) DU BLCALCSH [ ATt

OWM || 0.8702 0.7931

Continual [ HAT | 0.8674 0.7816
Learning KAN || 0.7206 0.4001

SRK || 0.7101 0.3963

EWC | 0.8416 0.7229

UCL || 0.8441 0.7599

OWM || 0.8270 0.7118

HAT || 0.8083 0.6363

B-CL (forward) 0.8809 0.7993
B-CL 0.8829 0.8140

\\PAY
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Architecture-based: beyond forgetting prevention

BCL

o Pros and Cons?

o Pros:
Deal with both knowledge transfer and forgetting

o Cons:
Only for task incremental learning (TIL)
Parameter-efficient fine-tuning comes with cost: the adapter is randomly
Initialized
0 Sometimes can be hard

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

Is this enough?

o We have seen in ASC that the tasks in the task sequence can be
similar and dissimilar

However, most of them are still similar (e.g., many sentiment words are
shared across domains)
o In practice, there can be a mixed sequence of tasks
Mix of similar tasks and dissimilar tasks
The CL model is supposed to learn well even under this challenging setting

Can we address this?
0 Avoid forgetting for dissimilar tasks
0 Enable transfer for similar tasks

Continual Learning, June 14 and 16, 2022 50



Architecture-based: beyond forgetting prevention

CATI]

o ldea

Based on task similarity, the model has different focuses
0 For similar tasks, CAT focuses on knowledge transfer
0 For dissimilar tasks, CAT focuses on forgetting prevention

o How does it work?

Focus on forgetting prevention is intuitive, we can use HAT

Focus on knowledge transfer becomes intuitive as well
0 Because we know what tasks are similar, we can simply share their parameters

But how do we detect task similarity?

[8]: Ke et al., Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks, NeurlPS 2020

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

= CATESI
o But how do we detect task similarity?

Only a small readout function is trainable A similar independent network
Check whether each task i’s knowledge trained from scratch
re_= === ~
is transferable to current task t | I
| |
\ el g
Q0000 __
® 00000 Knowledge et
Base
O0000 ©
OTooo0 00000
O O O O Input Data O O O O Input Data
Transfer Network Reference Network

[8]: Ke et al., Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks, NeurlPS 2020

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

CAT

o How does it perform

Datasets
0 Similar datasets

From Federated learning, F-CelebA, F-EMNIST
0 Dissimilar datasets

EMNIST, CIFAR100

Metrics
o FWT, BWT

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond forgetting prevention

CAT

o How does it perform
BWT

We have seen many of these
baselines before (see red boxes)

[ NCL ONE EWC| UCL HYP HYP-R PRO PathNet RPSNet| HAT | CAT
M(EMNIST-10, F-EMNIST): Overall 0.7293  0.7337 0.7339 0.7262 0.6271 04889 0.5391  0.5901  0.7044  0.7302 0.7710
M(EMNIST-10, F-EMNIST): EMNIST-10 ~ 0.9156 0.9437 0.9157 0.9161 0.8329 0.7254 0.9289 0.9163  0.8945 0.9337 0.9287
M(EMNIST-10, F-EMNIST): F-EMNIST ~ 0.5430 0.5238 0.5521 0.5362 0.4212 02524 0.1492 02638  0.5144 0.5268 0.6134
M(CIFAR100-10, F-CelebA): Overall 0.5535 0.5967 0.5945 05523 0.5352 03703 0.5863 0.5504 04801 0.5682 0.6194
M(CIFAR100-10, F-CelebA): CIFAR100-10  0.5124 0.5861 0.5345 0.5373 04667 02096 0.5599 0.5244 04056 0.5692 0.5479
M(CIFAR100-10, F-CelebA): F-CelebA ~ 0.5945 0.6073 0.6545 0.5673 0.6036 0.5309 0.6127 0.5764  0.5545 0.5673 0.6909
M(EMNIST-20, F-EMNIST): Overall 0.8024 0.8245 0.8213 0.8186 0.7332 0.6092 0.6794 0.7115 0.74835 0.8169 0.8439
M(EMNIST-20, F-EMNIST): EMNIST-20 09270 0.9712 0.9393 0.9567 0.8970 0.7856 0.9660 09472  0.8861 0.9678 0.9566
M(EMNIST-20, F-EMNIST): F-EMNIST ~ 0.5531 0.5310 0.5855 0.5425 0.4056 0.2565 0.1062 0.2403 04728 0.5136 0.6187
M(CIFAR100-20, F-CelebA): Overall 0.6018 0.6796 0.6292 0.6368 0.5878 0.3892 0.6682 0.6169  0.5410 0.6535 0.6843
M(CIFAR100-20, F-CelebA): CIFAR100-20  0.6136  0.7058 0.6348 0.6689 0.6053 0.3274 0.6896 0.6163  0.5507 0.6802 0.6683
M(CIFAR100-20, F-CelebA): F-CelebA ~ 0.5782  0.6273 0.6182 0.5727 0.5527 0.5127 0.6255 0.6182 05218 0.6000 0.7164
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Architecture-based: beyond forgetting prevention

CAT

o Pros and Cons?

o Pros:
Handle both transfer and forgetting, even in a mixed seguence scenario

a0 Cons:
Only for TIL

Need to train an additional reference network
0 This is not possible when it comes to pre-trained network

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond TIL

Can we go beyond TIL?

o What if | don’t have task information in testing?
Can we still use architecture-based methods?

Yes! But some adaptation is needed.

CLASSICP! is an example
0 More accurately, we will see this is for domain-incremental learning

[9]: Ke et al., Ke et al.,CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks. In EMNLP, 2021, NeurlPS 2020
Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond TIL

Background

o Contrastive loss

Become very popular recently. You probably
already know that

Intuitively

0 Unsupervised learning

0 Push dissimilar representations away

o Pull similar representations together
a

What is similar/dissimilar (positive/negative) is
decided by you

[5]: Ke et al., CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks, EMNLP 2021

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond TIL

Background

o Contrastive loss

Become very popular recently. You probably
already know that

Mathematically

0 Maximize the mutual information

0 Alignment: The model can learn the invariant
(shared) knowledge among similar (positive)
pairs

0 Uniformity: Preserve maximal information via
challenging negative samples

[5]: Ke et al., CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks, EMNLP 2021
Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond TIL

Background

o Contrastive loss

Why is it attractive to continual learning?

0 We want to pull together similar knowledge from
similar tasks while push away dissimilar tasks

[5]: Ke et al., CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks, EMNLP 2021

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond TIL

CLASSICE]

o ldea
Contrastive loss to deal with similar and dissimilar tasks

Knowledge distillation to accumulate all previous knowledge into the final/last
model, so that we do not need task information in testing

o How does it work?

[5]: Ke et al., CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks, EMNLP 2021

Continual Learning, June 14 and 16, 2022
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Architecture-based: beyond TIL

CLASSICE]

o How does it work?
CED as distillation

Train a self-attention
to extract similar
knowledge from
different tasks. This
serves as positive
samples

Classification

Self-attention mechanism

CED loss  Classification

i=1

Classification
Head

ITransformer Layers ;
| é)

(CED)

I Transformer LayersI
1 1
________ R
—1 I #Transformer Layers

Head

CKS los

Multi-headed
Attention

[5]: Ke et al., CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks, EMNLP 2021
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' Architecture-based: beyond TIL

= CLASSIC

o How does it perform
= Datasets
0 Aspect Sentiment Classification

= Metrics
o FWT, BWT,

Continual Learning, June 14 and 16, 2022
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rchitecture-based: beyond TIL

Scenario Category Model Acc. MF1
ONE 0.8584 0.7635

BERT ONEtcsc || 08353 07388

ONE 0.7814 0.5813

Non-continual BERT (Frozen) ONE-+csc 0.8265 0.7232
Learning ONE 0.8596  0.7807

Adapter-BERT  \p s || 08530 0.7516

ONE 0.7701  0.5189
I A I wav ONE+cse || 0.7761  0.5487
NCL 0.8048 0.7085

BERT NCL+csc || 0.7727 05807
NCL 0.8685 0.7873
BERT (Frozen) oy rese || 0.8693 0.7912

o How does it perform USRI ol i

NCL 0.8408 0.7455
w2v NCL+csc 0.8396 0.7509

Task information is unknown in testing B

KAN+ent 0.8278 0.7243
abel is shared task NG | ose0 07831
a’ e IS S are acrOSS aS S (l?rl\?i:) fj\gL 0.8538  0.7690
OWM 0.8611 0.7665
. : : DER++ 0.8753  0.8009

A.k.a. Domain-incremental learning T
HAT+last 0.8473  0.7649
HAT+ent 0.8418 0.7614

Continual EWC 0.8805 0.7875
Learning uCL 0.7123  0.3961
OWM 0.8766  0.7882
DER++ 0.8859  0.7985
HAT —
HAT+last || 0.8823 0.7919
HAT+ent 0.8854  0.8245

Adapter-BERT

KAN —
KAN+ast * || 0.7123  0.3961
KAN+ent * || 0.7123 0.3961

SRK * 0.7123  0.3961

EWC 0.7586  0.6545

wav UCL | 08187 06965
OWM || 0.8256 0.7253
DER++ 0.8459 0.7722

HAT —_
HAT+last 0.7599 0.5849
HAT+ent 0.7605 0.5349
TAMOL 0.8501 0.8059
CLASSIC (forward) 0,986 0.8365
CLASSIC 09022 0.8512

Continual Learning, June 14 and 16, 2022



Architecture-based: beyond TIL

CLASSIC

o Pros and Cons?

o Pros:
Beyond TIL, first technique for DIL
Have mechanisms to deal with both similar and dissimilar tasks

o Cons:

Cannot deal with unshared label scenario (CIL)

It relies on fixed LM.
0 In some cases, this is useful (e.g., fine-tuning)
0 However, in some other cases, we do need to update the LM (e.g., pre-training)

Continual Learning, June 14 and 16, 2022
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What’s next? More recent work

So far, we have learned 9 different CL models
o Including their ideas, implementations, evaluations, pros and cons

o Replayed-based
GEM, LAMOL

o Regularization-based
DER++
EWC

o Architecture-based

HAT, BCL, CAT, CLASSIC
Supsup

Continual Learning, June 14 and 16, 2022
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What’s next? More recent work

So far, we have learned 9 different CL models

o Want to have some hands-on experience and write some codes?

Go to
o https://qithub.com/ZixuanKe/PyContinual

What is next?

0 Let us to see some more recent directions/ideas very briefly
Beyond Supervised Learning
Online Continual Learning (Prof. Liu)

Continual Learning, June 14 and 16, 2022
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https://github.com/ZixuanKe/PyContinual

What’s next? More recent work

Beyond Supervised Learning

o We already know

Task-incremental, Class-incremental and Domain incremental
o There Is a more general categorization

Scenario

Description

GG

Task Given during train and Given during inference

GNs

Task Given during train, Not inference; shared labels

GNu

Task Given during train, Not inference; unshared labels

NNs

Task Not given during train Nor inference; shared labels

Continual Learning, June 14 and 16, 2022
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More recent work: Beyond Supervised Learning

For example, continual pre-training

o We know that the LM have become the basic component of NLP
applications

o However, as time goes by, we need to update the LM
This is naturally a continual learning scenario

o How to achieve continual pre-training?
GN (it should be useful for any end-tasks)
Unsupervised/self-supervised loss: Masked Language Model

A different goal
0 Instead of preserving the knowledge for a specific task
0 We need to preserve the transferrable knowledge

Continual Learning, June 14 and 16, 2022
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More recent work: Beyond Supervised Learning

For example, continual pre-training

o Still in infancy

Some recent work on
0 Dataset!10.11]
0 Analysis
Comparing different CL models!12
A model relies on a very large memory and Non-SoTA language model13]

[10]: Jang et al., Towards Continual Knowledge Learning of Language Models, ICLR 2022

[11]: Lazaridou et al., Mind the Gap: Assessing Temporal Generalization in Neural Language Models, NeurlPS 2021 (spotlight)
[12]: Jin et al., Lifelong Pretraining: Continually Adapting Language Models to Emerging Corpora, Arkiv, 2022

[13]: Qin et al., ELLE: Efficient Lifelong Pre-training for Emerging Data, Findings of ACL 2022

Continual Learning, June 14 and 16, 2022
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‘ That’s it

= Thank you
n Q&A

Continual Learning, June 14 and 16, 2022
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Topics

Lifelong or continual learning

Early research on lifelong learning

Continual learning based on deep neural networks
Continual learning in the open-world

Summary

Continual Learning, June 14 and 16, 2022
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‘ Sub-topics

= Continual learning based on deep neural networks
o Batch continual learning
o Online continual learning

Continual Learning, June 14 and 16, 2022
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Recall: Batch and online continual learning

Batch continual learning
2 When a new task arrives, all its training data are available
o Training can use any number of epochs

Online continual learning
o The data comes In a data stream.

o The data for each task comes in gradually. When a small batch of
data is accumulated, it is learned in one iteration.

o Training is effectively done in one epoch.

Continual Learning, June 14 and 16, 2022 73



‘ Online CL: Problem statement

* We learn a sequence of tasks incrementally. Each task ¢
has its dataset D; = {(x;,ys,)},~,, Where x; is an input

sample and vy, 1s its class label (y,. € Y}, the set of all
labels of task 7) and n; 1s the number of training samples.

* Training data for each task ¢ comes gradually 1n a stream.

* Whenever a small batch of data (denoted by X" with N Training is done
samples) from task ¢ 1s accumulated from the data stream, it '" One epoch
1s trained 1n one iteration.

* After all the data of a task are seen, the next task starts.

Continual Learning, June 14 and 16, 2022 74



‘ Online CL: Replay approach (most popular)

* A mini-batch used in training consists of X" and X",
where X of size Ny, is sampled from the memory buffer

M.

* M saves a small set of training samples of seen tasks.

* Note that, before seeing all the data of the current task ¢,
M have already saved some data from task ¢ sampled from
the data stream of task ¢ seen so far.

Continual Learning, June 14 and 16, 2022 75



Ditterence of replay: batch CL and online CL

Inter-task CF and Intra-task CF
Batch CL only have inter-task CF, but online CL have both

Online CL samples replay data continuously from both previous
tasks and the current task. Batch CL only saves previous data.

In batch CL, when a task arrives, all its training data is available,
but for online CL, the data comes gradually.
o In batch CL, all the saved replay data can be used in training the
new task in any number of epochs.
o Butin online CL, only XU is used in one iteration.

Guo, Liu, and Zhao. Online Continual Learning through Mutual Information Maximization. ICML-2022
76

Continual Learning, June 14 and 16, 2022



Online CI: Mutual information (MI) maximization

OCM: Online Continual learning based on Mutual information
Maximization.

2 OCM uses the replay approach.
Objective: dealing with CF in the CIL setting using Ml

maximization
Preventing information/feature loss in representation learning

Preserving previously learned knowledge
OCM has a new training strategy and a new data augmentation
method called local rotation.

Guo, Liu, and Zhao. Online Continual Learning through Mutual Information Maximization. ICML-2022
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‘ Problem with cross entropy (or other) loss

1. The popular loss function used in classification is the
cross-entropy loss L.

2. But L., learns only discriminative (and biased) fea-
tures to separate the classes of a task.

3. The other features that may be useful to classify be-
tween current and future classes are 1ignored.

4. When a future task arrives, the existing model has to be
revised because the previously learned discriminative
features may not be discriminative for classifying the
new and the previous classes, which causes CF.

Proposition 1. Minimal
cross-entropy does not
imply that all possible
features are learned.

Proposition 2. Features
not learned may cause CF
In continual learning.

Remark: We need to learn
& use as many features as
possible, i.e., learning
holistic representations.

Guo, Liu, and Zhao. Online Continual Learning through Mutual Information Maximization. ICML-2022

Continual Learning, June 14 and 16, 2022
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‘ OCM architecture

Xbuf 2 :
fo(X"*) | CIassnﬁer l £, (X

fi (X""“’)
; (Xbuf) > Head @ ]—»I(X"ew F(X™W)) + I(XP%; F(XP%))

= “’"\

Figure 1. Architecture of OCM. L .: cross-entropy loss.

\
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‘ The final objective

glaé —Cce(Xbl{f) + {I(Xnew; F(X”ew)) + [(X”‘ff'; F(thff))_i_

I(Flzt—l (th{f); F(thgf))}
~ ng%x{ﬁce({a:?, ymi’}iv:bl)} + max{?) log (16) + 2log (Ns)+
log (N) + InfoNCE({{:vz e Yri o beer bier: ") + InfoNCE({{z7 .

/

b
b } i= 1 s g )+InfONCE({{mz,cayg:?c}iil i\leag)

(11)
b b b 16 N
where xi,cﬁxs,r S {{xi,cvym‘?.c czl}izl and
, b b F(m?,C)TFlt_l(mgr)
g (mi,caxs,'r) — € " (12)
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Experiment results

Method MNIST CIFARI0 CIFARI100 TinylmageNet
M M=0.1k M=0.5k M=1k |M=02k M=05k M=1k | M=1k M=2k M=5k | M=2k M=4k M=10k
AGEM (Chaudhry et al., 2018)({56.9+5.2 57.74£88 61.64+3.2|122.7+1.8 22.7+£1.9 22.6+£0.7| 5.8402 5.8403  6.54+0.2 | 0.9+0.1 2.1+0.1 3.940.2
GSS (Aljundi et al., 2019b) |70.4+1.5 80.74+£5.8 87.5459(26.9+1.2 30.7+1.3 40.1+14|11.1+02 13.3+05 17.440.1| 3.340.5 10.0+0.2 10.5+0.2
ER (Chaudhry et al., 2019b) |78.7+0.4 88.0+£0.2 90.34+0.1{29.7+1.0 35.240.3 44.3+04(11.74+03 15.04£09 14.440.9] 5.6+0.5 10.1+07  11.7+x02
MIR (Aljundi et al., 2019a) [79.0+0.5 88.3+0.1 91.3+1.9(37.3+03 40.04+06 41.0+06[15.74+02 19.14+0.1 24.14+02| 6.140.5 11.7+0.2 13.5+0.2
ASER (Shim et al., 2021) |61.6+£2.1 71.0+0.6 82.1+£59(27.8+1.0 36.2+1.2 447+1.2|1644+03 12.2+19 27.1+£03] 5.3+03 8.24+0.2 10.34+0.4
GDumb (Prabhu et al., 2020) [81.2+05 91.0+£0.2 94.540.1{35.94+1.1 50.74+0.7 63.5+05[14.14+03 20.1+02 36.0+0.5[12.6+0.1 12.7+0.3 15.740.2
SCR (Mai et al., 2021b) 86.2+0.5 92.840.3 94.6+0.1|47.2+1.7 58.2+05 64.1+1.2|26.5+02 31.6+05 36.5+02(10.6+1.1 17.2+0.1 20.44+1.1
DER++ (Buzzega et al., 2020) [74.4£1.1 91.5402 92.14+02(442+£1.1 47.94£1.5 54.74+22(15.3£02 19.7+15 27.04+0.7| 4.540.3 10.1+0.3 17.6+0.5
IL2A (Zhu et al., 2021) 90.2+0.1 92.7+0.1 93.940.1{54.74+05 56.0+0.4 58.2+12[182+12 19.7+05 22.4+02|5.5+0.7 8.1+1.2 11.6+04
Co°L (Chaetal., 2021) 83.1+0.1 91.54+0.1 94.7+0.1|42.1+£1.2 51.0+0.7 58.8+04(17.1+04 242402 32.2405[10.1+0.2 158404  22.5+12
OCMM (no local rotation) |88.3+0.2 95.3+0.1 97.14+0.1(55.3+05 63.1+04 70.7+0.3|26.7+0.1 33.5+02 39.640.1{13.5+02  20.5+02  26.4+03
OCMM (no past) 89.5+0.1 95.04+0.1 96.0+£0.1|56.2+04 63.2+0.2 73.1+0.2|27.0+£04 34.0+0.1 41.04+03|15.0£04  21.0£03  26.0+0.2
OCMM 90.7+0.1 95.74+0.3 96.7+0.1|59.4+02 70.0+1.3 77.2+0.5|28.1+03 35.0+04 42.4+05|15.7+02  21.2+04  27.0+03
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Topics

Lifelong or continual learning

Early research on lifelong learning

Continual learning based on deep neural networks
Continual learning in the open-world

Summary
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Sub-topics

Continual learning in the open-world

a Closed world and open world

o Open world continual learning framework

o Novelty or out-of-distribution detection

o Two open world continual learning systems: CML and CILK

Continual Learning, June 14 and 16, 2022
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What do we want to achieve?

In almost existing continual learning research, both the tasks
and training data are given by the user or the engineers.

Can the system discover new tasks and also acquire the
ground-truth training data by itself.
o Then the system can become autonomous

Continual Learning, June 14 and 16, 2022
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Closed-world assumption and open-world learning
(Fei et al, 2016; Shu et al., 2017, Hu et al., 2020)

Traditional machine learning:
Training data: Dvn={D,, D,, ..., D,} of classes Y"an ={l,, L,, ..., L}.
Test data: Dtest ytest e {l,, L, ..., L}

Closed-world assumption: Ytest < ytran

Classes appeared in testing must have been seen in training, nothing new.
A system that is unable to identify anything new, it cannot learn by itself.

Open-world learning: ytest . ytrain = 4
Training data: D'n={D,, D,, ..., D}, Yran={l. L, ..., L}.
Test data: Dtest ytest e {l,, I,, ..., l,, Lo}

Fei, and Liu. Breaking the Closed World Assumption in Text Classification. NAACL-HLT 2016
Continual Learning, June 14 and 16, 2022 Hu, et al. HRN: A Holistic Approach to One Class Learning. NeurlPS-2020. 85



‘ Selt-driving cars need to learn continuously too
. = e

= Self-driving cars cannot reach
human-level of driving with only

rules and off-line training.
= Impossible to cover all corner cases

= Real-world is full of unknowns. =~
= Have to learn & adapt continuously g
In its interaction with humans and

the environment by itself.
= In the open world (changes & unknowns).

Continual Learning, June 14 and 16, 2022 86



A personal experience with a self-driving car

| consulted for a self-driving car company for a yeatr.

Once we took a self-driving car for a field test on the road.
At a T-junction, the car suddenly stopped and refused to move.
0 Every direction was clear, and nothing that we can see was on the road.

We had to take over manually and drove the car to the lab.
Debugging found that a sensor detected a pebble on the road.

o If the car should have said "I detected an unknown object on the road.
What should | do?” we would have said “It is safe. Please go ahead.”

The car can then learn the new object so that it will have no issue next time.
0 Thatis, learning on the fly or on the job.

Megagon Labs, June 10, 2022



Chatborts should learn continually after deployment
(Chen & Liu, 2018, Liu, 2020)

= Chatbot: human users may say things
a chatbot does not understand.

o It must learn new knowledge and new
language expressions during chatting.

= E.g., asking the current or other users.

o Humans learn a great deal in our daily
conversations

= Chatbots should not solely rely on offline
training Iinitiated by engineers.

Liu. Learning on the Job: Online Lifelong and Continual Learning. AAAI-2020
Continual Learning, June 14 and 16, 2022 88



‘ Lifelong learning chatbots: Scopes

= Learning from external sources

v Learning by reading web corpus, web
tables or past conversation [information
extraction], e.g., NELL.

= Interactive learning

v Learning through interactive multi-turn
dialogue [our focus]

Liu. Learning on the Job: Online Lifelong and Continual Learning. AAAI - 2020
Continual Learning, June 14 and 16,2022  Liu and Mazumder. Lifelong and Continual Learning Dialogue Systems: Learning during Conversation. AAAI-2021
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Sub-topics

Continual learning in the open-world

o Closed world and open world

o Open world continual learning framework

o Novelty or out-of-distribution detection

o Two open world continual learning systems: CML and CILK

Continual Learning, June 14 and 16, 2022
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‘ Open-world continual learning (Al Autonomy)
(Fet et al 2016, Shu et al 2017a, 2017, Chen & Liu, 2018, Liu, 2020)

(" Task manager Current \

I task |

I T]_J.y Tg? uuup TMQ‘ TN"&‘]_JJ uuy I N ew ta Sks

\ Previously learned tasks Futurelearningtasks discovered in

application
Datagained in
anplication Application

Orange lines:

_ Learning after model
Task-based Learner L e deployment

Knowledge Miner (+ prior knowledge) = . .
- Learning on the job

Model,,, .
B0

T M

Knowledgeto
he retained

Auxiliary
knowledge

Existing
knowledge

Knowledge
gainedin
application

Meta-knowledge miner

Liu. Learning on the Job: Online Lifelong and Continual Learning. AAAI-2020
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Characteristics of continual learning
(Chen and Liu, 2018, Liu, 2020)

Continuous and incremental learning process (no forgetting)
Knowledge accumulation in KB (long-term memory)
Knowledge transfer/adaptation (across tasks)

Learning after deployment (on the job). Self-supervision using the
accumulated knowledge and interaction with humans & environment.

Main steps:

o ldentify new tasks to learn (open-world learning or OOD detection)
o Acquire ground-truth training data (collecting training data interactively)

o Learn the tasks incrementally (continual learning)

Liu. Learning on the Job: Online Lifelong and Continual Learning. AAAI-2020
Continual Learning, June 14 and 16, 2022 Ke, Liu, and Huang. Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks. NeurlPS-2020 92



Learning on the job (after model deployment)
(Liu, 2020, Chen and Liu, 2018)

It Is estimated that about 70% of our human knowledge
comes from ‘on-the-job’ learning.

o Only about 10% through formal training

o The rest 20% through observation of others

An Al agent should learn on the job too as

o The world is too complex and constantly changing.
Have to learn continually and adapt

o Without this capabillity, an Al agent is not truly intelligent.

Liu. Learning on the Job: Online Lifelong and Continual Learning. AAAI-2020
Continual Learning, June 14 and 16, 2022
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Example 1 — a chatbot system
(Liu and Mei, 2020; Liu and Mazumder, 2021)

Session 1

o User-1: Hey, | visited Stockholm last week. The place is awesome!
o Chatbot: Where is Stockholm?
0 User-1: Stockholm is the capital of Sweden.

Session 2
o User-2: | am planning a tour to Europe next month.
o Chatbot: Are you visiting Stockholm? | heard it is a nice place.

Liu and Mazumder. Lifelong and Continual Learning Dialogue Systems: Learning during Conversation. AAAI-2021
Continual Learning, June 14 and 16, 2022
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Example 2 - a greeting bot in a hotel
(Chen and Liu, 2018)

See an existing guest.
Bot: “Hello John, how are you today?”

See a new guest - recognize he/she is new (00D and create a new task)
Bot: “Welcome to our hotel! What is your name, sir?”  (get class label)

Guest: “David” (got class label: David)

Bot learns to recognize David automatically

0 take pictures of David (get training data)

0 learn to recognize David (continual learning)
See David next time.

Bot: “Hello David, how are you today?” (use the new knowledge)

Chen and Liu. Lifelong machine learning. Morgan & Claypool. 2015, 2018
Continual Learning, June 14 and 16, 2022 95



Example (cont.)

In a real hotel, the situation iIs much more complex.

o How does the bot know that the novel object is a new guest?

Is the object a person, an animal, or a piece of furniture?
0 needs to use existing knowledge to characterize the novel object!

o Different characterizations require different responses (adaptation or
accommodation strategies)? E.g.,
If it looks like an animal, report to a hotel staff.
If it looks like a policeman, do nothing

If it looks like a hotel guest (with luggage), ask for his/her name: “Welcome to our
hotel! What is your name, sir?” and learn to recognize him/her

Liu, Robertson, Grigsby, and Mazumder. Self-Initiated Open World Learning for Autonomous Al Agents. AAAI Spring Symposium, 2022

_ _ Chen and Liu. Lifelong machine learning. Morgan & Claypool. 2015, 2018.
Continual Learning, June 14 and 16, 2022 96



‘ Lifelong/continual learning in the open world

=

Task Manager

Previously learned tasks

TN[ n

T>.

New tasks
Ground-truth

Lifelong Learning in the Open World for Al Autonomy

New task  Futurelearningtasks

. I
FNH.-:“ n uuy

Input from other

Training data

Task-based
Knowledge
Miner

(+ prior knowledge)

__________ J
> DN+1 l

OWC-Learner
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Relevant
/' Novel Module

functions
Irrelevant\

Do nothing
Knowledge to
Existing be retained Auxiliary .
knowledge ‘ knowledge T
Characterizer
A [ o Risk
, OWlBﬂQB Base & Assessment Sensor & - Application
World Model (KB) Executor :
1 Adaptor
(Planner)

Interaction
Module

= This paradigm
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Al Autonomy
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Self-initiated Open-world Continual Learning and
Adaptation (SOLA)

An agent Is represented as a pair (T, S),

T is the primary task-performer (e.g., dialogue system of the greeting bot)

S is a set of supporting functions (e.g., vision system and speech system) that supports
the primary task-performer.

T oreach S, € S has its own seven sub-systems (L, R, C, A, K, |, E),

L: open-world continual learner (classification, novelty detection & continual learning)
R: relevance module that decides if a detected novelty is relevant to agent’s task

C: novelty characterizer that characterizes the novelty

A: adaptor that adapts to novelty — characterizing novelty and formulating response

K: risk assessment and management module

| : interactive module to communicate with humans or other agents

E: action executor

Liu, Robertson, Grigsby, and Mazumder. Self-Initiated Open World Learning for Autonomous Al Agents. AAAI Spring Symposium, 2022.
Continual Learning, June 14 and 16, 2022 Chen and Liu. Lifelong machine learning. Morgan & Claypool. 2015, 2018. 98



Novelty characterization and adaptation

Characterization: a description of the novel object based on the

agent's existing knowledge.

Characterization at different levels of details => more or less precise responses.
0 Often done based on similarity:

E.g., it looks like an animal (general), or it looks like a dog (more specific).
0 Attributes/properties: e.g., a moving object, speed and direction of moving.

Adapting to novelty: a pair (Characterization, Response)

Response: According to characterization, formulate a specific course of actions to
respond to the novelty, e.qg.,

0 If novel object looks like an animal (characterization), report to hotel staff (response).

0o If cannot characterize, take default action (e.g., do nothing)

Enable continual learning (see next slide)

Risk assessment: each decision carries risks

Liu, Robertson, Grigsby, and Mazumder. Self-Initiated Open World Learning for Autonomous Al Agents. AAAI Spring Symposium, 2022.
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Adaptation enabled continual learning

Ask a human and learn

o E.qg., for the greeting bot, ask the human using the interactive module | (in
natural language) to get ground-truth data and incrementally learn.

Imitation learning.

o E.g., on seeing a novel object by a self-driving car, if the car in front drives
through it with no issue, the car may choose the same course of action as
well and learn it for future use.

Perform limited reinforcement learning.
o By interacting with the environment through trial-and-error exploration, the
agent learns a good response policy for future use.

Liu, Robertson, Grigsby, and Mazumder. Self-Initiated Open World Learning for Autonomous Al Agents. AAAI Spring Symposium, 2022.
Continual Learning, June 14 and 16, 2022 100



(LR, C,AK,IE)

the lifelong learning capability [@ =% w5 N
o Learning everything ’H o
o Learning everywhere

= Eve ry m Od u Ie pOte ntl al Iy h aS ﬁskManager Lifelong Learning in the Open World for Al Autonomy \

Ground-truth
Trainingdata

Task-based OWC-Learner
Khowlcdee (+ prior knowledge)

Relevant | Irrelevant
Module | Do nothing

= In a particular system, ) )
o Not all modules are necessary oty o)
World Model (KB) ( Adaptor Executor

2 some modules may be shared: \ ' Planner) |\ ey S /

= E.g., in a chatbot, Interaction module
and Executor may be the same

Liu, Robertson, Grigsby, and Mazumder. Self-Initiated Open World Learning for Autonomous Al Agents. AAAI Spring Symposium, 2022.

Continual Learning, June 14 and 16, 2022 101



Sub-topics

Continual learning in the open-world

o Closed world and open world

o Open world continual learning framework

o Novelty or out-of-distribution detection

o Two open world continual learning systems: CML and CILK
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One-class OOD detection:

To detect unseen classes, Fel and Liu (2016) proposed CBS
learning:

0 Center-based similarity (CBS) space learning.

It performs space transformation

o Each document vector d is transformed to a CBS space vector
Compute centers ¢, for the positive class

Compute the similarities of each document to c..
This gives us a new data set (in CSB space).

Fei, Wang, and Liu. Learning Cumulatively to Become More Knowledgeable. KDD-2016
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Space Transformation and lLearning

We can use many similarity measures.

After space transformation, we can run SVM to build a
classification in the CBS space

o CBS learning basically finds a ball for each class

Continual Learning, June 14 and 16, 2022 104



Traditional learning vs. CBS learning

Traditional learning (using SVM)

+ "= -

Continual Learning, June 14 and 16, 2022
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One-class learning: a holistic approach

It aims to use as many features are possible (holistic

representation).

A one-class loss Is proposed.
o Negative Log Likelihood (NLL) for one-class
o Holistic regularization (H-regularization)

L= E [-log(Sigmoid(f(x))]+X- E [[Vxf(x)|5

x~ Py x~ Py

- >y N >y
W

NLL H-regularization

Hu, Wang, Qin, JMa, and Liu. HRN: A Holistic Approach to One Class Learning. NeurlPS-2020
Continual Learning, June 14 and 16, 2022
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‘ Results in AUC

= For OOD detection, the
common evaluation

measure IS Area under the
ROC curve (AUC).

Table 1: Average AUCs in % over 5 runs per method on the three image datasets.

Class OCSVM  iForest DAE VAE DAGMM ADGAN OCGAN DSVDD ICS TQM HRN-L2 HRN
MNIST

0 986 969 894 997 500 995 998 980 989 995 970 99.5+00
1 995 995 990 999 766 999 999 997 998 998 087 999400
2 825 756 792 936 326 936 942 917 917 953 894  965+0.1
3 881 835 851 959 319 921 963 919 966 963 923 974401
4 949 879 888 973 368 0949 975 949 865 966 916 97.2+0.1
5 771 755 819 964 490 936 980 885 889 962 762  97.2402
6 965 874 944 993 515 967 99.1 983 988 992 944 992400
7 937 906 922 976 500 968 981 946 961 969 920  97.6+0.1
8§ 889 738 740 923 467 854 939 939 050 955 007  94.3+0.2
9 931 80 917 976 813 957 981 965 900 977 914  97.1£00
Avg 9129 8587 87.66 9696 50.64 9482 9750 9480 9423 9730 9137 9759
fMNIST

0 861 910 867 874 421 899 855 79.1 883 922 915 927400
1 939 978 978 977 551 819 0934 040 989 09058 076  98.5+0.1
2 856 872 808 816 S04 876 850 830 882 899 882  88.5+0.1
3 8.9 932 914 912 570 912 8.1 8.9 921 930 927  93.1+0.1
4 846 905 8.5 872 269 865 858 870 902 922 910 92.1+0.1
5 813 930 921 916 705 896 885 803 894 894 719 913404
6 786 802 738 738 483 743 775 749 783 844 794  79.840.1
7 976 982 977 976 835 972 939 942 983 980 989  99.0400
8§ 795 887 782 795 490 890 87 791 886 945 908  94.6+0.1
9 978 954 963 965 340 97.1 978 932 985 983 989  98.8+0.0
Avg 87.09 90152 88.13 8841 518 8843 8782 8477 9108 9277 90.09 92.84
CIFAR-10

0 616 661 41.1 700 414 632 757 617 768 407 806  77.3+02
1 638 437 478 386 571 529 531 659 713 531 482  69.9+13
2 500 643 616 679 538 580 640 508 630 417 649  60.6+0.3
3 559 505 562 535 512 606 620 591 60.1 582 574  64.4+13
4 660 743 728 748 522 607 723 609 749 392 733 TL5+1.0
5 624 523 513 523 493 659 620 657 660 626 610 674405
6 747 707 688 687 649 611 723 677 716 551 741 774402
7 626 530 497 493 553 630 575 673 641 631 555  64.9+1.1
8 749 69.1 487 696 519 744 820 759 789 486 799 825402
9 759 532 378 386 542 642 554 731 660 587 716 713409
Avg 6478 5072 5358 5833 53.13 6242 6566 6481 6927 5210 6665  71.32

Continual Learning, June 14 and 16, 2022
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DOC: Deep Open Classification

(Shu et al. 2017)

!
1

This __J:lfj;l_‘ Given a classification
Asus T L problem with n classes,
deskidp Ba=g=gs R\ X called, in-distribution
s EEEN e VoAV Y (IND) classes. In DOC,
e B iR s = :
monitqr — H [ AT Each head is a
s I=E=El R T = sigmoid unit as a
very T H VATV binary classifier,
— M| - [ S—"
good = — One for each class
— Y L
X h d

Figure 1: Overall Network of DOC

Shu, Xu, Liu. DOC: Deep Open Classification of Text Documents. EMNLP-2017
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‘ Finding the rejection threshold

Ply=lild) y [ --- et
' |
+ positive M:— ﬂ/ I
- negative g :
O WNSEEN b
|
' 1
s |
of
ﬁ:-zl :
I |
ﬁ [ 1
:I:T-E-l-_'l' .._i_l:. dl

Figure 2: Open space risk of sigmoid function and
desired decision boundary d; = T and probability
threshold ;.
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CSI: OOD detection via contrastive learning

CSI consists of two main ideas (step 1)
0 It does data augmentation and also class augmentation
For an image,

0 It does: crop, horizontal flip, and color changes to create additional images. These

are treated as positive data.
0 It does rotations of 90, 180 and 270 degrees and treat them as different classes and

thus negative data.
o It uses supervised contrastive learning for feature learning.

. exp(zz - 2p/T)
- S g &

ZI’EB(:C) exp(Zx . ZII/T)

Tack, Mo, Jeong, Shin. CSI: Novelty detection via contrastive learning on distributionally shifted instances. NeurlPS-2020.
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CSI: OOD detection via contrastive learning (cont.)

Step 2 of CSI

o Given the feature extractor h trained with the loss in the previous
slide, h is frozen, and

o only fine-tune the linear classifier f, which is trained to predict the
classes of task t and the augmented rotation classes.

At inference or testing,
o Ensemble class prediction

Z f xdeg j,deg

deg

Continual Learning, June 14 and 16, 2022 111



CMD: OOD detection via data generation

CSl is very accurate in AUC but extremely slow due to its
data and class augmentation and contrastive learning.

CMD is much faster, at least 10 times faster, with on par AUC
o CMD learns a CVAE generator to generate pseudo-OOD data.

( ;0 Cb) z~q¢(z|x) [logpg(x|z C)] +KL(Q¢( |X C)||p9( | ))

o Key idea: combine embeddings of different IND classes to generate
abnormal conditions for CVAE to generate pseudo-OOD data.

po(X|z,k, ci.cj) = po(x|k*xy. + (1 -k)*y. 2]

Such data are similar but also different from the data of any existing class.

Wang, Shao, Li, Hu and Liu. CMG: A Class-Mixed Generation Approach to Out-Of-Distribution Detection. ECML-2022.
Continual Learning, June 14 and 16, 2022 112



'CMG framework and training Process

00D Loss

r
optimize (

Feature Extractor

L

IND Data (x, y)

f
Classifier Training CVAE Training
Reconstructed Data
Predicted Class f
(000 = 0| [000 -0
Ye z
t !
v 1 ] x
IND Data (x, y) IND Data (x, y)
\_
First Stage

|
Pseudo OOD Data

t

Decoder

/ N\
y z
f fsample

k*y+(1-k)*y,; N(o, a%1)
\

t

Class embedding y,; Class embedding y,;

e ET )

Second Stage

Note that:

(1) Stage 2 only
fine-tunes, no
feature learning.

(2) The classifier
IS not specified.
Then CMG can
Improve existing
OOQOD detectors.

Fig. 1. CMG framework and its training process. The OOD loss can be cross entropy in
CMG-softmax, cross-entropy+energy in CMG-energy, or other possible losses. Although
we put Classifier Training and CVAE Training in First Stage, they are independent.
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Performance comparison

Datasets OSRCI SupCLR CSI React
alaseLs original +CMG- original +CMG- original +CMG- original +CMG-
e (5] e e
CMG dd Setting 1 - OOD Detection on the Same Dataset
= € a S an MNIST 98.34+0.9 99.14+0.4 97.14+0.2 98.6+0.2 97.24+0.3 99.340.1 98.6+0.1 98.940.1
CIFAR-10 67.54+0.8 72.3+0.6 80.0+0.5 88.94+0.5 84.7+0.3 89.840.6 85.5+0.2 85.840.1
energy-based SVHN 91.740.2  92.140.1 93.840.2 96.5+0.3 93.940.1 96.74+0.2 92.84+0.1 92.840.1
TinyImageNet 58.1+0.4 59.94+0.3 \ \ \ \ 51.940.0 51.840.1
|OSS O Cross Average 78.9 80.9 90.3 94.7 91.9 95.3 82.2 82.3
entrO aS the Setting 2 - OOD Detection on Different Datasets
py CIFAR-10 as IND
OOD IOSS to f|ne- SVHN 80.24+1.8 79.3+2.5 97.34+0.1 93.04+1.3 97.94+0.1 97.840.6 92.14+1.1 98.240.8
LSUN 79.94+1.8 92.1+0.6 92.84+0.5 97.74+0.6 97.7+0.4 99.240.1 96.5+0.7 96.4+0.4
LSUN-FIX 78.24+0.5 81.241.0 91.6+1.5 94.1+0.3 93.5+0.4 96.24+0.3 90.6+1.9 91.940.2
tune an OOD TinyImageNet 70.0+1.7 83.24+1.7 91.44+1.2 96.3+0.8 97.6+0.3 98.7+0.3 94.34+0.5 94.04+0.6
ImageNet- 78.140.3 78.54+0.2 90.54+0.5 92.940.3 94.040.1 95.74+0.1 92.04+2.2 91.340.1
FIX
deteCtor CIFAR100 77.44+40.4 77.440.6 88.6+0.2 90.3+0.2 92.24+0.1 92.040.2 88.4+0.7 89.240.2
CMG t CIFAR-100 as IND
] runs a SVHN 65.54+1.1 87.24+1.3 83.44+0.5 85.3+1.1 88.24+0.7 85.94+1.2 88.6+1.3 97.14+1.3
. LSUN 74.440.8 76.5+0.7 81.6+0.5 84.3+0.9 80.94+0.5 89.940.8 88.1+2.8 89.340.8
IeaSt 10 t”neS LSUN-FIX 69.7+0.6 T71.74+0.9 70.940.1 69.840.8 74.040.2 74.0+1.3 69.7+0.5 70.6+2.5
TinylmageNet 63.94+1.2 67.34+0.4 78.54+0.8 84.24+1.1 79.44+0.2 89.44+0.8 87.04+3.2 87.940.5
.I:aster than CSI ImageNet- 63.840.9 66.14+0.9 75.040.5 72.44+0.8 79.24+0.2 79.64+1.1 78.940.3 79.840.2
. FIX
CIFAR-10 58.84+0.8 61.94+0.4 72.240.6 75.940.7 78.240.2 72.240.4 74.4+1.3 72.940.5
Average 71.7 76.9 84.5 86.4 87.7 89.2 86.7 88.2
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Open—world continual learning via meta-learning

_
> (’(( :_4;\
ngEuEe 1| ﬁ
L2AC perform: —----- | N
. :(frTthgsleEx A Cias ): é}i} :L"_: 199 4. 94
o OOD detection ~ ~------ 1 ey T RN
o Continual learning e — prassay s
. O et Soon Ckone. Memory for Seen Class Examples Meta-Classifier |
L2AC—-meta-learning & ~
o It maintains a dynamic set S of seen classes that allows new

classes to be added or deleted without re-training.
Each class is represented by a small set of training examples.

o In testing, the meta-classifier uses only the examples of the
seen classes on-the-fly for classification and rejection (novel)

Xu, Liu, Shu and Yu. Open-world Learning and Application to Product Classification. WWW-2019
Continual Learning, June 14 and 16, 2022 115



L.2AC framework

L2AC has two major components:

o aranker: retrieve some examples from a seen class that are
similar/near to the test example.

Given a test example x that may come from either a seen or an unseen class,
the ranker finds a list of top-k nearest examples to x from each seen class c.

o a meta-classifier. perform classification after it reads the retrieved
examples from the seen classes.
The meta-classifier produces the probability that the test x belongs to class c
A threshold is used to determine reject (OOD).

Continual learning: give some examples of each new class.

Continual Learning, June 14 and 16, 2022 116



Sub-topics

Continual learning in the open-world

o Closed world and open world

o Open world continual learning framework

o Novelty or out-of-distribution detection

o Two open world continual learning systems: CML and CILK

Continual Learning, June 14 and 16, 2022 117



‘ Recall open world continual learning

= SOLA: Self-
Initiated Open-
world Continual
Learning and
Adaptation.

= Al autonomy

Task-based

OWC-Learner

Lifelong Learning in the Open World for Al Autonomy

Task Manager
[ " previouslyleanedtasks  Newtask Futurelearningtasks :
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Example SOLA: natural language interface (NLI)

Performance task: user asks the system (CML, like Siri and Alexa) to

perform a task in NL, the system does it via API actions
Approach: natural language to natural language matching (NL2NL)

CML builds NLIs for API-driven applications semi-automatically.

To build a new NLI (or add a new skill to an existing NLI),

Application developer writes a set S; of seed commands (SCs) in NL to represent each
API action |.

0 SCsin S; are just like paraphrased NL commands from users to invoke i, but the objects to be
acted upon in each SC are replaced with variables, the arguments of .

When the system does not understand a command (novelty), it adapts and learns new
(paraphrased) SCs from users interactively and continually.

Mazumder, Liu, Wang, and Esmaeilpour. An Application-Independent Approach to Building Task-Oriented Chatbots with Interactive Continual Learning.
Continual Learning, June 14 and 16, 2022 NeurlPS-2020 Workshop on Human in the Loop Dialogue Systems (HLDS-2020) 119



An example — Smart home

SmartHome: API action: API (arg : arg type) |Seed Command (SCs) | Example NL command
SWItChOn ng ht(X]_) SwithOnLight(X1: location) |Switch on the light in X1 |Switch on the light in the
o _ Put on light in X1 bedroom (X1)
S_WItChmg ona Ilght at a SwithOffLight(X1: location)|Switch off the light in X1 |Switch off the light in the
given place X1 Put off light in X1 bedroom (X1)
ChangelightColor Change the X1 light to X2 |Change the bedroom (X1)
(X1 : location, x2: color) |l want X1 light to be X2 |light to blue (X2)

Let an SC be “put on light in X1" for this API,

where X1 is a variable representing the argument of the API.

User command: “power on the light in the bedroom”

It can be matched or grounded to this SC, where the grounded APl arguments are {X1
= ‘bedroom’}.

Continual Learning, June 14 and 16, 2022 120



CML has three components

SC (seed command) specification

o to enable application developer to specify a set of SCs for each of
their APIs

Command grounding module

o ground a user command C to an action SC by matching C with the
correct SC (whose associated action API is then executed)

Interactive continual learner

o It interacts with end-users to learn new SCs and paraphrases of API
argument values.

Continual Learning, June 14 and 16, 2022 121



Command grounding module (CGM)

Rephraser and Tagger (R):

o Given the user command C, R repharses C and tags each word or
phrase in the rephrased C with either ‘O’ (i.e., not an argument type)
or one of the possible argument types of the action SCs.

SC Matcher (M):

o Given the rephrased and tagged command C and the set T of (action
or utility) SCs, Matcher M computes a match score f(t, C) for each t
In T and returns the top ranked SC.

o This work uses an information retrieval (IR) based unsupervised
matching model for M

Continual Learning, June 14 and 16, 2022 122



Novelty detection, characterization, adaptation

Novelty detection: when CML cannot ground a user command, e.g.,
it cannot understand “turn off the light in the kitchen”

Novelty characterization: which part of the command it understands and
which part it has difficulty based on similarity. E.g., it cannot ground “turn off”

Adaptation (or accommodation):
Response: ask the user by providing some options (to collect ground-truth data)
Bot: Sorry, | didn’t get you. Do you mean to:

option-1. switch off the light in the kitchen,
option-2. switch on the light in the kitchen, or
option-3. change the color of the light in the kitchen?

Continual learning: learn a new SC. No issue with related commands in future.

Continual Learning, June 14 and 16, 2022 123



Risk consideration

CML manages risk in two ways

o Do not ask user too many guestions in order not to annoy the user.
Learning can be done to assess each user’s tolerance.

o When characterization i1s not confident, take the default action, i1.e.,

Ask the user to say his/her command in another way
0 rather than providing a list of random options for user to choose from
which can be annoying or make the user lose confidence in the system!

Continual Learning, June 14 and 16, 2022 124



Continuous knowledge learning in dialogues

Dialogue systems are increasingly using knowledge bases
(KBs) storing factual knowledge to help generate responses.

o KBs are inherently incomplete and remain fixed,
which limit dialogue systems’ conversation capability

CILK: Continuous and Interactive Learning of Knowledge

o to continuously and interactively learn and infer new knowledge
during conversations

Mazumder, Ma, and Liu. Towards a Continuous Knowledge Learning Engine for Chatbots. arXiv:1802.06024 [cs.CL], 16 Feb. 2018
Continual Learning, June 14 and 16, 2022 Mazumder, Liu, Wang, and Ma. Lifelong and Interactive Learning of Factual Knowledge in Dialogues. SIGDIAL-2019 125



‘ Knowledge learning in conversation

Humans Learn and Leverage Knowledge in Lifelong Manner!

Vs o
Hey, I visited Stockholm last Hey, I am planning for a
week. The place is awesomel " Europe tour soon
. ___

> o =~

& |
USER1 Where is Stockholm? USER3 |
‘ Are you visiting Stockholm ? ‘ ¢
§ O i I heard the place has lot of
Stockholm is the “ attractions
Cﬂp‘l—fﬂl Of SWEden USER?2 i 7 - 7
! A ) ! ! /_/_,_,/
O — /agent | O &
USER1 USER2

——————————————————————————————————————————————————— [agent

SESSiﬂn 1 Session 2

Knowledge learning happens in a multi-user environment
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Opportunities to learn in conversations

Extracting knowledge directly from user utterances. E.g.,

User: Obama was born in Hawalii.
Agent extracts: (Obama, Bornin, Hawaii) — expressed in triples (h, r, t)

Asking user questions & expecting correct answers, e.g.,
Agent: Where was Obama born?

User: Hawalii => (Obama, Bornln, Hawaii)
When the agent cannot answer user questions, it asks the

user for some supporting facts and then infers the answers.
We focus on this setting (which covers 1 and 2)

Liu and Mazumder. Lifelong and Continual Learning Dialogue Systems: Learning during Conversation. AAAI-2021
Continual Learning, June 14 and 16, 2022 127



‘ Two types of queries or questions

= Wh-question
o E.g., Where was Obama born?
o (Obama, bornin, s?)

m Fact verification guestion
o Was Obama born in Hawaii?
o (Obama, bornin? Hawaii)

Mazumder, Ma, and Liu. Towards a Continuous Knowledge Learning Engine for Chatbots. arXiv:1802.06024 [cs.CL], 16 Feb. 2018
Continual Learning, June 14 and 16Vggmder, Liu, Wang, and Ma. Lifelong and Interactive Learning of Factual Knowledge in Dialogues. SIGDIAL-2019 128



Assumptions

Focus on developing the core interactive knowledge learning

o Do not build all peripheral components (like fact or relation extraction,
entity linking, etc.) which are assumed to be available for use.

Assume that the user has good intentions

o User answers questions with 100% conformity about the veracity of
his/her facts
Cross-verification can be used to deal with wrong knowledge

Do not assume user can answer all questions
0 as opposed to the teacher-student setup - the teacher is assumed to know
everything.

Mazumder, Ma, and Liu. Towards a Continuous Knowledge Learning Engine for Chatbots. arXiv:1802.06024 [cs.CL], 16 Feb. 2018
Mzagymder, Liu, Wang, and Ma. Lifelong and Interactive Learning of Factual Knowledge in Dialogues. SIGDIAL-2019 129
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‘ Components for knowledge learning

.. Inference

"+, * Knowledge = Interaction |
¢ °0 O8O
N 7 TR Base ey Module @999 Module
i a\, b o
= @ | eo®
°« . " K & ¢ 7 M

Infers new Knowledge
to answer user’s query

Interacts with user to
acquire Facts

Stores acquired Facts (Triples)

KB: Collection of Triples

T={ (h,r,t)| h,t € E,r € R} |
l l l - Performs
inference over
the acquired
i Facts and
| existing KB

- decides whether to
ask or not, and
formulates
questions to ask
the user for
supporting facts

Triple Entity Set Relation Set

Triple (Boston, LocatedinCountry, USA)
Store

head relation tail

or

LocatedInCountry
Boston > USA

Knowledge Graph

Mazumder, Ma, and Liu. Towards a Continuous Knowledge Learning Engine for Chatbots. arXiv:1802.06024 [cs.CL], 16 Feb. 2018
Continual Learning, June 14 and 16, 2022 Mazumder, Liu, Wang, and Ma. Lifelong and Interactive Learning of Factual Knowledge in Dialogues. SIGDIAL-2019 5



2 |

nteractive knowledge learning in dialogue: example
(Mazumder et al. 2019)

USER

Boston located ?

Q
[ / °
¢ ‘eo K
- ® @ ' Knowledge
USER: In what Country is

® ' Base
0

. I

Semantic Parser /
Relation Extractor . T G5

| R a— 11

( Boston, @ © & DY

LocatedinCountry, —* ,

?) Interaction Inference

. Module Module
Parsed Query Triple
| ax

Dialogue Act (Ask for a Clue or Entity fact) or infer Query

|

CILK: I don’t know what
“located in Country” means?
Can you provide me an example?

}

‘ Natural Language Response Generator

USER:

CILK:

USER:

CILK:

USER:

CILK:

(Boston, LocatedInCountry, ?) “In what
Country is Boston located?” [Query]
I do not know what “located in Country”
means? Can you provide me an example?
[Ask for Clue]
(London, LocatedInCountry, UK). “London
1s located in UK.” [SF1]
Got it. Can you tell me a fact about
“Boston”? |Ask for Entity Fact]
(Harvard University, UniversityLocatedlIn,
Boston). “Harvard university is located in
Boston.” [SF2]
(Boston, LocatedInCountry, USA) “Boston is
located in USA.” [Answer]

Mazumder, Liu, Wang, and Ma. Lifelong and Interactive Learning of Factual Knowledge in Dialogues. SIGDIAL-2019
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Topics

Lifelong or continual learning

Early research on lifelong learning

Continual learning based on deep neural networks
Continual learning in the open-world

Summary
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Summary

Classical ML: isolated, closed-world, single-task learning

This short course studied the following
o Definition of lifelong/continual learning
o Early research of lifelong learning

o Lifelong/continual learning using deep neural networks
Batch continual learning
Online continual learning

o Continual learning in the open world
Try to achieve Al autonomy
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Summary: challenges

Catastrophic forgetting
Still a major challenge, especially for class incremental learning (CIL)

Knowledge transfer — limited work has been done.
Correctness and applicability of knowledge
What to transfer and how to transfer forward and backward

Open world continual learning is an even bigger challenge
Novelty, characterization, adaptation, and incremental learning

Goal: Al autonomy - the next generation Al.

Autonomous learning agents will be built in restricted environments
0 Interacting with people, other agents, and the environment
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